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SYNOPSIS

This thesis presents various approaches to investigate the

local dynamical processes and to forecast the evolution of the

mesoscale currents in an open block of ocean -- the dynamical

approach, the statistical approach, and the combined statis-

tical and dynamical approach. The dynamical approach uses a

finite element numerical model to solve the linearly damped

barotropic vorticity equation. An exterior dynamical calcu-

lation in a i000 x I000 square km domain is performed to

generate a simulated open ocean data set. This is to provide

initial, boundary and verification data for future forecast

simulation experiments over an interior 500 x 500 square km

domain. The well-posedness of the open boundary conditions are

treated next.-Here we extend Sundstr_m work (23) to consider

boundary disturbances also. The same treatment for the quasi-

geostrophic potential vorticity equation is first presented

here. Some special cases of estimating the errors of the solu-

tions in terms of the errors of the initial and boundary data

in the studies of boundary conditions are given in which the

error bounds are exact. Some benchmark dynamical calculations

are performed for later comparison purposes.

The statistical approach uses Gandin's objective analysis

formula to do the space-time interpolation. Some novelties

in the applications of this formula are the correlation

function used, which is computed from the simulated ocean data

set, and the data points selecting algorithm included, which
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is to increase the efficiency and stability of the computation.

Several statistical forecast examples using data at the same

time level and several time levels are given.

The combined statistical and dynamical approach uses the

statistical model to provide the initial and boundary condi-

tions and to assimilate recently available data into the

dynamical model. Several examples of using this combined

statistical and dynamical approach are given. The question

of exploiting one data realization is discussed in depth.
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CHAPTERI

INTRODUCTIONTO OPENOCEAN
REGIONALFORECASTMODELLING

I.l The Problem: Time and Space Scales, Data Types and Poten-

tial Availability.

The oceans cover 70 percent of our globe. They, together

with the atmosphere, determine the weather and climate of the

earth, are abundant in food and mineral resources, are an im-

portant avenue of transportation, are a place for military

operation, and are now a site for chemical and nuclear waste

disposal. Because of their practical importance, there has

been a growing interest in the studies of the oceans, which has

evolved into four disciplines: physical oceanography, biological

oceanography, chemical oceanography and geological oceanography.

The goal of the physical oceanographers is to obtain a sys-

tematic quantitative description of the physical characteris-

tics of the ocean waters and of their movements. The former

includes such aspects as the temperature and salt content, which

determine density and infer vertical movement, and also includes

dissolved substances or biological species in so far as they

yield information about the currents. The latter include the

major ocean currents which circulate continuously, the low

frequency, mesoscale eddies in the mid-ocean, the variable

coastal currents, the reversing tidal currents, the rise and

fall of the tide, and the waves generated by wind or earth-

quake. These oceanographers also want to understand these

motions in terms of basic physical principles--that is, accord-
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ing to the general laws of the dynamics and thermodynamics of

fluids--and to model them. "Why is there a Gulf Stream? What

causes waves to break? When, where and how are energy, heat,

and momentum put into the sea? How are these quantities moved

about from place to place and depth to depth and ultimately

dissipated." (Robinson & Simmons (27) )

"The very large size of the oceans makes it difficult to

achieve this goal. Man is small, his resources limited, and

his technology relatively primitive compared to what is needed.

Moreover, large-scale fluid flows are almost always turbulent

and the ocean is of no exception. Consequently, there are a

wealth of physical phenomena occurring in the ocean, charac-

terized by a variety of time and space scales. The time scale

ranges from seconds, hours, days, years to longer than mil-

lennia. The space scale ranges from millimeters (tiny surface

capillary waves), meters (small-scale turbulence), kilometers

(powerful and variable current systems) to the circumference

of the earth (global-scale general circulation). Some of the

scales are directly imposed by ice ages, or seasonal or daily

heating and cooling of the sea surface, or the size of an ocean

basin, or the extent of submarine mountain ranges. Other scales

arise spontaneously from internal resonances or turbulence."*

To obtain useful and believable results in any single attempt

towards the final goal, we have to limit the scales of study.

The objects of Study of the Harvard Open Ocean Modelling
Group are the dynamics of the low frequency variability of

ocean currents (mid-ocean eddies and intense current sys-

* Robinson & Simmons (27)
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tems) and the role of these currents in the dynamics and trans_

ports of the general circulation which are relevant to regions

of the western North Atlantic Ocean. "The western North Atlan-

tic main subtropical gyre is perhaps the most intensively stud-

ied relatively large region of the world's oceans. It is known

to contain variable current features (meanders, rings, eddies,

fronts, lenses, waves) with distinctive synoptic characteris-

tics and a variety of underlying dynamics. Although detailed

processes are not yet known, this area is known to have sub-

regions active in eddy energy production, conversion and trans-

mission, substantial heat transport, and vigorous air-sea in-

teractions. It is the scene of a large amount of present and

potential practical human activities." (Robinson, private comm.)

TheJapproaches we adopted are: (i) to constructa dynamical

and a statistical numerical model for an arbitrary block of

open ocean in which the medium-scale turbulence is resolved

while the subgrid-scale turbulence is treated implictly and

empirically, (ii) validate and evaluate these numerical models

by comparing the model results with real ocean data sets. "The

real ocean data may be from the conventional data sources such

as the temperature, velocity, salinity data collected from

hydrographic stations, real time XBT's, SOFAR floats and drift-

er observations, and satellite infrared sea surface temperature,

etc. Potential available data sources include satellite al-

timetry, acoustic tomography, and satellite monitored mother

buoys reporting measurements from moored instrumentation (such
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as inverted echo sounders) and continuously recording current "

and temperature." (Robinson, priv. comm.) (iii) Combine the dynamical

and statistical models for the purpose of assimilating the

most recently acquired data into the dynamical model in some

statistically optimal sense.

The ultimate goal of our studies is to construct a model

of the ocean that is a good enough physical analogue of the

real ocean so that we are able to use it to investigate the

local dynamical processes and to forecast the evolution of

the mesoscale currents in a block of ocean.

Because ocean currents transport nutrients, chemicals and

particulate matter, as well as heat and energy, knowledge of

them is also important to those concerned with the life and re-

sources of the ocean and with waste disposal in the ocean, as

well as to those who seek to understand our climate. "Physical

oceanography is by no means an isolated scientific discipline;

it is interactive and interconnective with meteorology, biologi-

cal oceanography, chemical oceanography, geological oceanography

and environmental sciences." (Robinson & Simmons (27)) Better know-

ledge of the ocean circulation gained from good ocean circulation numeri-

cal models can help us understand more about the climate, the

globai distribution of the chemicals, and the biological produc-

tivity of the sea by coupling the ocean circulation numerical

models to the atmospheric, chemical, and biological numerical models.

"This effort can benefit the society by contributing to the rational

management of the planetary environment and resources." (Robin-

son (24) )
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The following sections describe briefly the approaches we

have adopted. Detailed descriptions will be presented in the later

chapters. The results presented in this thesis are restricted

to those obtained from the simulation data. However, they form

the starting point and pave the way for working with the real data.

1.2 The Dynamical Model

"The Ocean is a classical fluid system. The basic physical

laws governing its dynamic behavior are those of classical hy-

drodynamics and thermodynamics. They include the conservation of

mass, momentum, and energy. These conservation laws can be ex-

pressed in equations that are applicable to a continuum. These,

together with the equation of state of seawater and the conser-

vation equation of the combined specific density of all the dis-

solved salts that influence the mass density of the water, con-

stitute a system of partial differential equations which are com-

plete and adequate to describe the evolution of the state of the

system." (Robinson (25)) Thus, one way to forecast the evolution

of the ocean currents is to solve the initial-boundary value

problem posed by the system of partial differential equations.

This is the dynamical approach. The predictability in the real

cases is much lower than that in the simulated cases due to addi-

tional sources of errors such as physical and observational

errors besides computational ones.

However, the basic model equations are very general. They

contain a wealth of distinct phenomena and are applicable to

many special circumstances of fluid flows. For example, "they
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contain solutions corresponding to acoustic waves, surface and °

internal gravity waves and bores. They can describe the breaking

of waves on the beaches, the wakes of ships and fish, convective

overturning in deep heated trenches and the massive coursing and

transient meandering of the Gulf Stream." (Robinson (25)) In or-

der to limit the study to mid-ocean mesoscale eddies, we perform

a scale analysis of the original equations. Keeping only those

terms which are significantly influenced by the effects of the

earth's rotation and ignoring the others, we obtain the quasi-

geostrophic potential vorticity equation. It is a good model

for thermocline and deep mesoscale eddies in the mid-oceans.

Due to its analytic inaccessibility, numerical methods are

used to solve the initial-boundary value problem of the non-

linear quasigeostrophic potential vorticity equation. However,

because of the speed and storage constraints of the contempor-

ary computers, it is neither feasible nor desirable to model the

world ocean. The domain we chose for modelling study is thus

limited to a block region in the mid-ocean in order to have the

required resolution and accuracy. The boundary of the domain

chosen, which is not a solid boundary, is called an artificial

boundary or open boundary. In this case, what is an appropriate

boundary condition on this open boundary is not so obvious. It

is called the "open boundary condition problem." This open boun-

dary condition should provide enough information on the inter-

actions between the eddies in the interior and the exterior flow,

and in such _ way that the solution inside the domain can be

uniquely well determined. To answer the question "what is a
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well-posed (existence, uniqueness, continuous dependence) open "

boundary condition?" turns out to be not so easy. Not aware of

all aspects or not taking a broader view of the problem could

give rise to misleading conclusions. Take the barotroDic vor-

ticity equation, which is the two-dimensional analog of the quasi-

geostrophic potential vorticity equation, as an example. The tra-

ditional boundary condition, the so-called Charney, Fj6rtoft, and

von Neumann boundary condition, is to specify the streamfunction

at all points at an initial time t 0, the streamfunction at all

boundary points and vorticity at only inflow boundary points

_ % >_0 " In their studies of this boundary condition, Sundstr6m

(23) and Bennett (5), who considered only one aspect of the prob-

lem, reached contradictory conclusions. Neither of them was com-

pletely right or wrong. Sundstr6m, who ignored the existence ques-

tion, proved that the solution depends continuously on the initial

condition. He did not establish the same for the boundary condi-

tion. Bennett, who claimed the CFVN boundary condition is ill-

posed because a set of complex constraints have to be satisfied

by the boundary data at the points where the flow is tangential

for the equation to have a smooth solution, is too narrow in his

viewpoint. The constraints should be allowed in the formulation

of initial-boundary value problems, no matter how complicated

they are. Otherwise, almost all nonlinear initial-boundary value

problems will be ill-posed, which is undesirable. The status of

the "open boundary condition problem" is that we should have no

difficulty in determining what boundary information--which repre-

sents the interaction between the interior and exterior flow--is
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enough for us to determine uniquely the solution inside the domain.

But what the minimal, non-redundant boundary information is, or

in other words, what constraints this boundary information has

to satisfy, for the problem to be well-posed is still unknown.

However, this should not constitute a big problem, because some-

times the solution does not have to satisfy the boundary condi-

tions exactly (in some weaker form will suffice) and sometimes,

in discrete formulations, the computational boundary needs not

even to be the original boundary. Thus, from a practical point

of view, we can still carry out the numerical calculations even

though the well-posedness of the problem is not well resolved.

The most common numerical methods used to solve the initial-

boundary problem are the finite difference, finite element and

pseudospectral methods. In Haidvogelet al (12) these three methods

are used to solve the barotropic vorticity equation in an open

ocean. Integrations of moderate length (5-10 periods of the known

analytic solution) are performed to determine the accuracy, sta-

bility, and efficiency of each method as a function of problem

class and the associated physical and computational non-dimensional

parameters. It is found that all three methods are, in general,

capable of delivering stable and efficient solutions. However,

the finite element and pseudospectral methods are, on the average,

4 to 15 times more accurate respectively than the finite differ-

ence method. More precisely, they are not compared from the same

ground. The finite difference, finite element, pseudospectral

method used in the comparisons are of 2nd, 4th and infinite order

of accuracy respectively. The comparisons are based on the same



-9-

space and time discretizations. The finite element quasigeostrophic

open ocean numerical model has since been adopted as a standard

dynamical forecast model. It is used to generate a simulated

ocean data set with which various controlled forecast experiments

are performed and diagnosed. The details of the dynamical fore-

cast model and some simulation results will be presented in Chapter II.

1.3 The Statistical Model

Another way to forecast the ocean currents is by statistical

methods. If we have sufficient statistical knowledge about how the

future and the present are correlated, knowing the currents today

provides some clue as to what the currents may look like tomorrow.

There are many approaches in constructing statistical models. One

may use the state-space approach (Box (6) ) in which variables of

interest are formed as a state vector which is related to the

state vector at a previous time through a dynamical equation. The

parameters of the dynamical equation are identified from the sta-

tistics of the system. The approach we are going to adopt here is

the space-time objective analysis. Objective analysis (Gandin (I0))

has long been used to map coarsely distributed data into the whole

field. Here this technique is extended to do interpolation not

only in spacebut also in time. In general, we can use data at

different points and different time levels to interpolate to any

point at any time. The interpolation which uses the data at a

certain time level to obtain the field in the future forms our

statistical forecast model.

The success of our statistical model relies on a good cor-

relation function, because it contains the information on
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how the fields are related. Thus, special care has been taken

to find a correct and usable correlation function. The approach

we followed is to compute the correlation function directly

from the simulated ocean data set generated by the dynamical

model. Using this computed correlation function, our statis-

tical model has been able to deliver good and credible results.

The statistical model can be applied in various ways other

than the pure statistical forecast. For example, it can be used

as an interpolation scheme both spatially and temporally to

provide initial and/or boundary conditions for the dynamical

model. In this way the dynamical and statistical models are

combined together. The details of the statistical model and

some simulation results will be presented in Chapter III.

1.4 The Combined Statistical and Dynamical Approach

Although the dynamical model has been proven capable of

delivering remarkably accurate forecasts if it is provided

with perfect initial and boundary data, these data are usually

very scarce or even missing in typical mid-ocean conditions.

Furthermore, in the open domain case the boundary condition

changes with time. It has to be predicted before we can do the

dynamical forecast. Also, if there are new data available, they

can be assimilated into the model to obtain a better estimate

of the dynamical field. It is to provide the necessary initial

and boundary conditions and to assimilate recently available data

that statistical methods are introduced to the dynamical model.
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This is our combined statistical and dynamical approach.

In this approach, the statistics needed to complete the study

are usually not known. Especially in the open domain case, the

statistics of boundary forcing are very difficult to estimate and

predict. The approach we adopt here is to compute these statistics

directly. This is possible because of the availability of verifi-

cation data provided by the simulated dynamical calculation. How-

ever, they are not computed on a grid point-by-point basis, but

on a region-by,region basis. Within each region, the statistics

are treated as uniform. The intention is to replace these computed

statistics later by estimates which are averages of the computed

statistics from several realizations. It is these estimated sta-

tistics that are going to be used in the forecasting studies which em-

ploy real ocean data.

Some examples of the combined statistical and dynamical app-

roach are given in Chapter IV. They constitute the acme of this

thesis. To our knowledge this is the first serious attempt to

apply these techniques to dynamical oceanography. It is our be-

lief that this methodology will make a substantial contribution

to understand the dynamics of ocean currents and to describe them

via a "network approach" involving a multicomponent real-time ob-

servational network and dual numerical model.

1.5 Brief Summary of Thesis Topics and Results

In this section, we briefly summarize the topics contained

and results presented in this thesis. In Chapter II, we discuss

the dynamical model. The quasigeostrophic potential vorticity

equation, which is our fundamental model equation, is first
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derived in Section II.l from a scale analysis of the classical

fluid dynamical equation. We then describe the finite element

method to solve the linearly damped barotropic vorticity equa-

tion, which is a slight variation of the quasigeostrophic po-

tential vorticity equation in two dimensions. The simulation en-

vironment is described in Section II.2. The major work of our

simulation experiments is performed with the linearly damped

barotropic vorticity equation.

The question whether a set of open boundary conditions are

well-posed is discussed in Section II.3. We find that the func-

tional classes for the boundary variables involved are not arbi-

trary. They must be restricted in some related ways for the solu-

tion to depend continuously on the initial and boundary data. But

the necessary and sufficient condition for an open boundary condition

to be well-posed is still unknown today. This extends Sundstr6m'swork

(23) to consider boundary disturbances also. The same treatment

of the quasigeostrophic potential vorticity equation is a new result.

We obtain as a bonus an estimate of the error of the solu-

tion as a function of the errors of the initial and boundary con-

ditions accumulated in time. However, this is not a very tight

bound. In Section II.4, we obtain an exact bound for the linear

barotropic vorticity equation with zero initial condition and

perfect boundary condition. These results are also new.

Some results of the persistent dynamical calculation, in

which the boundary condition is kept frozen from the initial

time, are given in Section II.5. The purpose is to provide a

benchmark with which future simulation results can be compared.
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In Section II.6, we study how the dynamical forecast depends .

on the persistent interval and the reinitialization interval.

We observe that the boundary condition has a dominant influence

on the dynamical forecast. Thus,osome time must pass before the

reinitialization can be effective. This new result is unexpected.

In Chapter III, we discuss the statistical model. The space"

time objective analysis formula is derived in Section III.l The

correlation function to be used and the algorithm for selecting

data points are discussed in Section III.2. These are new re-

sults. In Section III.3, we study how the statistical forecast

depends on the model parameters. The purpose is to choose the

parameters properly to obtain the best result. The statistical

forecast using data at one time level is employed to perform

this study. In Section III.4, the results of statistical fore-

casts using data at several time levels are given, which may

then be used to construct initial conditions. In Chapter IV,

we discuss the combined statistical and dynamical approach. The

optimal combination of estimates formula is derived in Section

IV.I. This formula is used to obtain a better estimate from

several a priori estimates. This is the first time that the

optimal estimation theory is applied in oceanographic studies.

In Section IV.2, we discuss how to reduce the amount of sta-

tistical information required to perform the optimal com-

bination. Error models are introduced in which the statis-

tics in each region are treated as uniform. We give some

examples of the combined statistical and dynamical approach

in Section IV.3. The first example studies how the dynamical

MAURY OCEA_3_PH_C LIBRASY
NSTL _S 385_2-5001
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forecast depends on the initial and boundary condition sampl-

ings. This may be used to find the most efficient data sampl-

ing scheme satisfying a given forecast accuracy requirement.

The second example performs the dynamical calculation with

the boundary condition obtained from the statistical forecast.

The result is better than either the persistent dynamical fore-

cast or the persistent statistical forecast. The third example

updates the interior with a patch of data. We find the updating

does not do much good if the boundary condition is not updated

as well. If we have a perfect boundary condition but an im-

perfect initial condition, then the interior updating will

certainly help. This is identical to the classical updating

results. The fourth example combines the persistent statistical

forecast and persistent dynamical forecast to obtain a better

estimate. In Section IV.4, we explore how to obtain the best

forecast from a given perfect data field. It is shown that a

good estimate of the boundary condition is very important in

obtaining a good result. The last chapter draws some conclusions

and future research suggestions.
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CHAPTERII

THE DYNAMICALAPPROACH

II.l Quasigeostrophic Dynamic Model

In this section, we describe the dynamical model in detail.

We first derive the quasigeostrophic potential vorticity equa-

tion from a scale analysis of the classical fluid dynamical

equations. Although this equation has been derived in many

places (see Charney (7), for example), we rederive it here in

an oceanic context. Then we describe the finite element method

used to solve the linearly damped barotropic vorticity equation,

which is a slight variation of the quasigeostrophic potential

vorticity equation in two dimensions, numerically. The basic

settings for all the simulation experiments reported in this

thesis are described at the end.

The classical fluid dynamical equations governing the mo-

tions of the ocean expressed in a coordinate frame rotating with

the earth are

_ + _ u. + v-_j+w_,-/_ ew = - f (2.:>

-- f (2.2)

where is the velocity in the x-direction pointing to the east.

_r is the velocity in the y-direction pointing to the west.

_/ is the velocity in the z-direction pointing vertically

upwards.
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is the density of the ocean water.

T is the potential temperature.

0

_= 2D.._°s8

is the earth's angular rotating rate.

is the latitude.

is the gravity constant.

Making the hydrostatic approximation, equation (2.3) is

replaced by

-- 7 (2.3a)

The Boussinesq approximation is used, which treats the den-

sity as constant except when it is associated with the gravity

where a buoyancy force is introduced due to density difference.

Equations (2.3a) and (2.4) become

:: E<-_ c7"-7_r,_,)]= -_ (2.3b)

(2.4a)

respectively.

Introduce the following scale amplitudes:

( ×,_):/-(×,2'3 _:/>.;'

cu, 4) =U(_" v-';

/-- t/•,_= ---.
0'

? = -/2._ +P/. u,_?"

7LU

= -- = J'C_-)

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6g)
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where _ is the characteristic horizontal scale.

is the characteristic vertical scale.

U is the characteristic horizontal velocity.

is the Coriolis parameter at some mid-latitude

is the radius of the earth.

_(,)is the basic stratified temperature field.

/_ is the Br_nt-Vaisala frequency, which is equal to [_-_---_ _-

is the thermal expansion coefficient.

The dynamical equations in non-dimensional form are

T =N

= 0

=0

where the prime's have been dropped and

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
(Rossby number)

2 -- _-_ (Burger number) (2.13)

2e,*Z 
For the scale of motions which are significantly influenced by

the effects of the earth's rotation, the following assumptions

are made:

_o << _ (2.14)

2 " O_f,) (2.15)

(2.16)/%--

(2.17)

/_.
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Expand the flow variables by the following perturbation

approximation

_4 =/o +2oA, +-'" (2.18)

The zeroth-order equations are

- 72o= )_o_ (2.19)

_o = ?o_ (2.20)

=
(2.22)

_' O'c_-)_o = 0 (2.23)

Equations (2.19) and (2.20) are the so-called geostrophic rela-

tions. From (2.23)

_o = 0 (2.23a)

So (2.22)

Z_ox+ _ =0 (2.22a)

Thus, the zeroth-order motions are horizontally non-divergent

and have no vertical components.

The first-order equations are

Tot ÷ _o Z.,: ,do ro_ +_.r(,) _, = o
where

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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From (2.24), (2.25) , (2.27), (2.28) and (2.21) , the fol-

lowing equation is derived

where

(2.30)

V2= * +o#"
After we have solved for _, we can find the zeroth-order

horizontal velocity, which is our main interest, from (2.19)

and (2.20)

(2.31)

(2.32)

(2.33)

This is the quasigeostrophic potential vorticity equation.

The potential vorticity q along the projection of a particle

path on a horizontal plane is conserved. This equation played

a significant role in the early development of numerical

weather forecasting.

Although the numerical model used to solve the quasigeo-

strophic potential vorticity equation has been implemented and

successfully tested and validated, we shall limit the following

discussions of numerical solution and simulation experiments to

the linearly damped barotrophic vorticity equation only, which

is a slight variation of the quasigeostrophic potential vorti-

city equation in two dimensions (with bottom friction included).

_o = -- _ (2.20a)

= _X (2.19a)
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where

The linearly damped barotropic vorticity equation on a

-plane are (in dimensional form):

/ = / +18

is the bottom friction coefficient.

Using the scaling

we have (omitting the prime's)

where

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

= _ (p-Rossby number)

(bottom frictional Ekman number)

is a measure of nonlinearity and 2_

(2.42)

(2.43)

is a measure

of dissipativity.

The Harvard Open Ocean Dynamical Model used for dynamical

forecast simulation studies is a finite element model. This

model uses the finite element method to solve equations (2.40)

and (2.41) in an arbitrary rectangular region. For more detailed
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information on applying the finite element numerical method

to ocean modellings, see Hirsh (13).

A computational grid domain used in the finite element model

is shown in Figure 2.0. The bases are chosen to be the bilinear

elements which are products of two linear elements in variable

x and y respectively, i.e.

where _6,) is a piecewise linear function which is equal to

1 at x=x i and 0 at other grid points. Each _6_ is a pagoda

function.

The time dimension is treated by the following second-

order time-differencing scheme.

where

_.,I (/- _)_h _
(2.45)

Let

(2.46)

Substitute (2.48) and (2.49) into (2.46). Multiplying by

a basis function _(x)_(_)and integrating over the entire do-

main (this is using the Galerkin's principle), we get
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YlO

Y9

Y8

Y7

Y6

Y5

Y4

Y3

Y2

YO

h

x 0 x I x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 xlO

Figure 2.0 A computational grid domain for the finite

element dynamical numerical model.
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where ('_') is the matrix with ('_.,_) element _

is the Kronecker's product _)_ _'_) , i.e.,

a matrix with _ _, q_ C_, _) element _) W#; )

_c_)is the matrix with 6_2_> element _J_cx)_Ex)_)_

_¢_)is the matrix with _) element _/_(y}_C,) _

W(Y)and _q) are tridiagonal with the local form

-_-C/ ÷ /)

,, _ / I,I/4V._

_(_is the matrix with (¢_) element _,I#_-_'_

j_ ¢) is the Arakawa Jacobian which is the finite

difference approximation to

;.,)]
(2.50)
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The proof of (2.49) can be found in Jespersen ( 14 ). This

Jacobian is antisymmetric with its arguments and also conserves

vorticity, energy and enstrophy when integrated over a closed

domain (Arakawa (i) ).

Of course, we could have represented (_&_) as a vector

instead of a matrix, thus eliminating the need for the Kron-

ecker product. The reason for representing (_&_) as a matrix

is that we can invert the matrix M faster. To see this, we

write (2.49) in component form

(2.51)

If (_) is an_/X_ matrix, we can solve (2.52) by two/_ matrix

inversions--one for W(*)and one _ t;)@. Inverting two /_lwA/

matrix is of less complexity than inverting an/_A/amatrix,

which would be required if (_) is represented as/_/ vector.

This is one of the benefits gained by using product elements

in a rectangular region.

Fix ( 9 ) has shown that linear elements for the linear-

ized advective equation _ +_x-0 produce fourth order accu-

rate phase errors. To maintain this accuracy for the vorticity

equation, the solution of the Poisson equation (2.41) for the

stream function must also be of fourth-order accuracy. This is

accomplished by the method of deferred correction (Pereyra (17)).
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Note that

_ d _
(2.53)

where _ is the usual five-point Laplacian

<0= / -_ / (2.54)

O I 0 j

Therefore, two successive Poisson solutions yield _ to

fourth-order accuracy in the following manner. First, obtain

a second-order accurate solution, _/ , from K 6_2 m _'_

Then, a fourth-order accurate estimate of _ is the solution

to

= (2.55)

The boundary condition used in the finite element model is

the Charney, Fjortoft and von Neumann boundary condition, i.e.,

the specification of streamfunction everywhere on the boundary

and of vorticity only at inflow boundary points. To see how the

finite element model implements this boundary condition, let us

introduce three types of points and their respective computa-

tional molecules _ , that is, their local contribution to

the mass matrix M.

/_ (2.56)
(i) interior points _=_ /

(ii) regular boundary _'_ / _ / i_points (Eastern %_ 0

wall) b / _ (2.57)
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corner ons °(Southeast corner) _4E--Jr o / (2.58)

The lattice point associated with the given element is

underlined. Analogous computational molecules exist for regular

boundary points on the northern, southern and western walls and

for the southwest, northwest and northeast corner points.

Let

_a_ for points not at or adjacent to_x
the boundary

----2_x-_J-_E for interior points adjacent to
the eastern boundary but not near

a corner

_X_-_+_ for the interior southeast corner

point

and so on for points adjacent to other boundaries and corners.

It can be shown that this new formulation decouples the deter-

mination of the interior vorticity from that of the boundary

vorticity (thus simplifies the treatment of boundary condition)

and is equivalent to

_/a _ (2.59)

where _ has the same relationship to _" as /_ to/_ .

In addition

M/(_) whe re

f

/ 0 0 o o

/ _ / 0 0 0

o o o i _. i

o o o o / 7,,_

(2.60)
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and all of the unknowns are interior points. That is, we use

the known dynamic relations between boundary and interior points

to disconnect the solution of one from the other.

Furthermore, given the interior values of vorticity from

the inversion of /_ , each of the four boundaries can be

decoupled from its neighbors by using an identical strategy.

That is, using cornerpoint dynamic relations, the cornerpoint

values of vorticity can be eliminated from the solution of the

remaining boundary points. For instance, the resulting matrix

equation for the eastern boundary minus its cornerpoints can be

?
_L

0

O

O

written

2. 0 0

,a _r .a

o o o

o o o

o o 0
0 0 0

0 0 0

- . 8,a

. ?' (2.61)

where _E is the column vector of unknown vorticity values

along the eastern boundary (minus corners) and vector _£ con-

tains only the known information from previous time steps and

the terms reflecting the newly updated values of interior vor-

ticity. When values of vorticity are to be imposed at a par-

ticular boundarypoint, the appropriate row in matrix equation

(2.61) and element in _E --the i-th, say--are replaced,

respectively, by the i-th row of the identity matrix and the

desired value of vorticity. The boundary values on the other

boundaries (minus cornerpoints) are treated analogously. The

cornerpoint values then follow algebraically.
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Summing up, the order of calculation in the finite element

model is the following: interior vorticity, vorticity at regu-

lar boundary points, vorticity at cornerpoints, and lastly,

the stream-function. Figure 2.1 is the logic diagram showing

the order of the dynamical calculation.

II.2 The Simulation Environment

In this section, we discuss the basic settings of the

simulation experiments performed and reported in this thesis.

An exterior calculation is performed with the dynamical model

in a 1000 km sq. domain with 65x65 grid points. The initial and

boundary data for the exterior calculation are supplied by the

two barotropic Rossby waves fit to the MODE-I 1500 meter data

(McWilliams (16)). The best-fit waves have wavelengths of 171 and

291 kms and periods of 161 and 129 days, respectively. The phase

velocities for these waves have components of (-1.0,0.7) and

(1.6,2.1) cm/sec. The corresponding group velocities are (0.5,

1.4) and -1.2, 4.2) cm/sec.

The scalings are chosen to be

is E=_, =The _-Rossby number

Ekman number is chosen to be 0.016 (corresponding to a spin-

down time of i000 days).

The exterior calculation is carried out for six periods

(where time is measured in terms of a period of the higher fre-

(2.62)

(2.63)

(2.64)

1.48. The bottom frictional
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Time
Level

n+l

n n n n Qn BCn (_)_B _C

n-i

Figure 2.1 The logic diagram showing the order of
the dynamical calculation.
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quency forcing wave). After two periods, a nonlinear mixture

of scales has been achieved within the i000 km square domain.

The values of _and _, starting at period two, are collected

at each time step (there are 128 time steps in one period) to

provide initial, boundary and verification data for a forecast

calculation over a smaller interior region (500 km square)

later. The objective of the exterior calculation is to provide

a simulated mid-ocean data base with a plausible statistical

character, one which allows controlled forecast simulation

experiments under approximate mid-ocean conditions (Robinson (26)).

II. Well-posedness of Open Boundary Conditions

Consider the linearly damped barotropic vorticity equation

(.2.40) (2.41) in an open domain_ and a time interval [O,T]

(see Figure 2.2). The Charney, Fj_rtoft, and von Neumann boun-

dary condition, i.e., the specifications of _on_and   xCo,T]

and _ on parts of _/_[0, T] such that _ 2'0 (where _- is the
a_

distance measured along @_ in the counterclockwise direction),

is an open boundary condition to the equation. A question arises

as to whether this is a well-posed boundary condition, i.e.,

whether the solution exists for all specifications of the

boundary variables involved, is also unique for a particular

specification and as well depends continuously on the functions

specified. This question turns out to be less than easy.

In the closed domain case, the boundary variables are usually
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f

f
_0

Figure 2.2 An open domain_ * [ 0, T ] for the linearly
dampedbarotropic vorticity equation.
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f

fixed to some particular functions , say _---- 0 or aJlXE_T]

The only question we have to answer is whether the solution

exists and is unique with respect to these particular functions

imposed on the boundary. In an open domain case, the situation

is slightly different. The variable on the boundary is not re-

stricted to be a fixed function; it can take any of several

functions. Let us group all those functions in a functional

class such that if the boundary variable takes any of them, the

solution to the equation exists. Then what characteristics does

this functional class have? Is it a linear space or some sort

of Sobolev space? If there are more than two boundary variables

involved, are the functional classes of the boundary variables

independent? (Here independence means that the choice of a

function from the functional class for one boundary variable

does not depend on the choice of a function from the functional

class for another boundary variable.) It turns out that these

classes of functions are very difficult to characterize, and

usually are neither linear spaces nor independent.

Take the CFVN boundary condition to the linearly damped

barotropic vorticity equation (in nondimensional form) as an

example.

(2.40)

(2.41)
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The CFVN boundary condition is

Let C1 be the class of _unctions _ is going to take,

C 2 be the class of functions _ is going to take,

C 3 be the class of functions _2 is going to take.

If the solution is required to be smooth, then

(2.65)

(2.66)

(2.67)

(2.68)

Rewrite (2.40) as

(2.69)

(2.70)

At the boundary points where the flow is tangential

_ *_f=,)

(2.71)

I

=P
This is one way to compute _ .

da

____ f - in (2.72) can also be computed from _o_ 98, _8

at previous times. These two values must coincide.

Bennett(5) concludes from (2.72) that the CFVN boundary
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condition is ill-posed because -- , which is equal to the

tangential velocity, is a part of the solution to be found.

This viewpoint seems to be very narrow. If his viewpoint is

adopted, then almost all nonlinear initial-boundary value prob-

lems are ill-posed, no matter what kind of boundary condition

is used.

From (2.68), (2.69), (2.70), and (2.72), we know that C I,

C 2, and C 3 are not independent. They are the constraints the

initial and boundary data have to satisfy for the solution to

exist. They are clues to the discovery of minimal and nonre-

dundant information required to determine the solution.

To see whether the solution depends continuously on the

initial and boundary data, let _ , _x be two solutions of

equations (2.40), (2.41), _,= _ __ , then

(2.73)

(2.74)
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where

Using

we

the

the

get

following identities have been used

following identity

(2.76)

(2.76a)

(2.77)



-36-

We make the following estimates

<.._ ;v>'l IIvcv>,_11 IIv_'lldA

<
m

(2.79)

(2.80)

where IIv#ll _ _ r"_¢Tx
= _'(-_-) +._-_.,1 j (2.81)

a, b are arbitrary positive constants.

Using the estimates (2.79), (2.80)

pectively, we get

__z,+} _ II,(¢_,,t)ll(#./.I#_.'_a._+g,,v¢'e'_,)

- ,9. JL

(2.82)

in (2.74), (2.78) res-

(2.83)
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where

g -

(2.84)

(2.85)

Let

Multiply

together

i_ = 2_9c _2

_-_-_-T

E

o_. T n.

_ __b = __6..-_

(2.86)

(2.87)

(2.88)

(2.82), (2.83) by K22, K12 respectively, and add them

Let

o_T 17_
I c),.d _ 9 0 )

(2.91)

(2.92)
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w

(2.93)

where (2.94)

(2.95)

(2.96)

Integrate (2.89) from t = 0 to t"

Integrate (2.97b) from t" = 0 to T, we get

...<

(2.97a)

(2.97b)

(2.98)



-39-

If

j_ IIv_/II=,/A--,o

/:d. / +++°
/, + o

(2.99a)

(2.99b)

(2.99c)

(2.99d)

(2.99e)

then

(2.100)

Thus, we have shown that the solution depends continuously

on the initial and boundary data (the uniqueness of the solution

follows from this) if

Ck,'= _ ,.,..,,_- IIv(y'_,+_)!1"__

_-: _=__= _/Iv+,ll _

(2.86)

(2.87)

also the initial and boundary data are restricted to change in

a way such that the solution still exists for the new data and

/_1. I'Ve'toll :L°/'4 < _ (2.99a)



-40-

(2.99c)

(2.99d)

(2.99e)

If we put all these constraints on the functional classes C I,

C 2, C 3, then C I, C 2, C 3 are not linear spaces anymore. These

constraints are only sufficient conditions for the initial-

boundary value problem to be well-posed. What the necessary and

sufficient conditions on C I, C 2, C 3 are for the problem to be

well-posed is still unknown.

The well-posedness of a certain boundary condition for the

quasigeostrophic potential vorticity equation can be treated in

the same way. The following results are presented without de-

tailed explanation.

Consider the quasigeostrophic potential vorticity equation

in a domain _X _ H]x[_TI shown in Figure 2.3.

where

(2.30a)

(2.33)

which correspondsIn the following, we assume _) _'0

to the physical situation that the basic state of the fluid is

stably stratified. A plausible boundary condition for (2.30a),

_--@ (2.32a)
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H<II 

0

f

* [O,T]

Figure 2.3 An open domain _ * [ 0, H ] * [ 0, T ] for the

quasigeostrophic potential vorticity equation.
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(2.32a) is

¢,/_.r_.H)x co,rl = t/'u

a-._ >o

Let C 1 be the class of functions that _o

C 2 be the class of functions that _3

C 3 be the class of functions that

C 4 be the class of functions that _U

C 5 be the class of functions that _B

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

is going to take,

is going to take,

is going to take,

is going to take,

is going to take.

(2.109)

(2.110)

(2.108)IzL(+-0, _=H) -- tu IILg#=o,_=H)

(2.107)

The following constraints must be satisfied for the solu-

tion to exist

I =
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where

%
Let _ •

then

(2.

____

a_

_'-;" >o

(2.112)

;_,+ ______J :o
a#

_-----0
Jr

_e { in
-?'_. 121Xf'.H] (2.113) is related to
a,l i_ ----

"_-_= 0
at pre_ious tlmes.

(2.113)

be two solutions of (2.30a) (2.32a) and _'_- _-#l '

(2.114)

The following estimate is derived similarly to(2.89)

/ _ _/H[ " " " f_/_'')_"_

,_.; ,9 ._ / -,.

tf_'v ) + dA d_

(2.115)
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where

(2.116)

Let

,9._'Coj,/7xC,.T7
(2 .i18)

#= "_ / v,_'k,,I (2.119)
1_xt¢tl l_to.rl

JZx6*AtIxt,.rJ , _¢"1..,, , d,,laCl a l a.a(;I.)

(2.120)

then

(cont.)
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where (2.122)

(2.123)

/_d --- _/"."_ (2.124)

Also

Thus,

.<

• f_.21!'_7

,+

if

(2.125)

(2.126a)



-46-

I /, I 2

r,/. _ _, I¢'/l ,_,¢d_ .¢'_-',"0 (2.126dl

then

• fTfaf .____% "_ "
• A ],,,oj..,f('o._) ,_.: es'._-' (2.127)

So the solution depends continuously on the initial and boundary

data (hence it is unique) if the data can only vary in a way

such that the solution exists, and if the additional constraints

Aa<_w _o_and (2.126a-g) on C I, C 2, C 3, C 4 and C 5

are satisfied. Again these are only sufficient conditions. The

necessary and sufficient conditions are yet to be found. An in-

£erpretation of the formulas (2.97) (2.125) is in the next section.

II.4 The Zero Initial Condition Problem

When we were studying in the previous section the contin-

uous dependence of a solution on the initial and boundary data,

we obtained as a bonus an estimate of the error of the solution

at time t'as a function of the errors of the initial and boundary
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data accumulated from time 0 to t'. For example, for the

linearly damped barotropic vorticity equation, we obtain

de

(2.97a)

However, this estimate is too conservative. The error is

estimated to grow with time only at a rate no faster than the

exponential. This is not a very tight bound. In practice, the

error grows with time at a rate slower than the exponential,

say a polynomial. In some cases it may decrease. For instance,

consider a dynamical calculation for which perfect boundary

data are available while the initial data are not known and

hence taken to be zero. Starting from zero initial conditions,

we drive the dynamical model forward in time with perfect data

supplied on the boundary for all time. It is reasonable to ex-

pect that the error will decrease with time because more in-

formation about the state of the system is provided through the

boundary data. The more we know about the system, the better

the solution is. Therefore, although (2.97a) is of some theo-

retical interest, it is not practically useful. However, it is

very difficult to find a tighterbound without losing the gener-
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r

ality. Here we consider a special case for which a exact error

bound can be established.

Consider the linear barotropic vorticity equation with

linear damping (i.e., £ = 0 in (2.40) and (2.41))

_t (2.128)

in an open domain shown in Figure (2.2)

Let _ be a solution of (2.128) which satisfies the fol-

lowing initial and boundary conditions

_ I_C,,T]= _ (2.130)

We want to estimate the error growth rate, starting from a zero

initial condition (hence with an initial condition error) but

using a perfect boundary condition. Let _ be the solution to

this problem

and _ i= _- _, then

-i{

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)

(2.136)
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It is easy to show that

(2.137)

Since on _X [0_ T]

j_. IIV_"ll'o_*I,' = _ j.,,.llv/ll"a* (2.138)

Thus, the error decreases exponentially with time. The e-

_L. . If _=0 then
folding time is equal to d_

(2.137a)

I(_¢ll=_AI_' = J_./IvflluA (2.138a)

The error neither increases nor decreases with time, but

stays constant. Figure 2.4 shows the errors as a function of

time from numerical calculations for the case _= O . Figure (2.4a)

corresponds to the case with a two Rossby Waves true solution

Figure (2.4b) corresponds to the case with a one Rossby Wave

true solution _ = _ (--o,_[X +0,_ +o._-o,5_3)

And we do see that the errors stay almost constant. To see how

the error evolves in time with the initial and boundary condition

errors in the general case, we have to resort to numerical methods.
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1.15

1.06

1.02

0.96

0.90 , , ,

0.00 0.76 1.52 2.28 3.04

0.49 "

0.47"

0.46"

0.45-

0.44

0.43

0.42"

(a)

0.41 , , ,

0.00 0.76 1.52 2.28 3.04

Figure 2.4

(b)

The energies of the errors as functions of time

for the linear experiments ( k=O ) that start

with zero initial conditions corresponding to
the true solutions

( a ) _0= cos(-0.831x+O.559y+0.828t-0.55)
+ 1.93 cos(-O.354x-O.469y+l.O25t+2.07)

( b ) _0= cos(-O.831x+O.559y+O.828t-0.55)
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II.5 Summary of Detailed Persistent Dynamical Forecast Results "

In this section, we perform some benchmark dynamical simu-

lation experiments. The purpose of these benchmark calculations

is to provide results with which future simulation experiments

can be compared. Obviously, the first benchmark dynamical cal-

culation is the one that uses perfect initial and boundary data.

(Here, and hereafter, the data are taken from the data set

generated by the exterior calculation in Section II.l). The

only error sources in this experiment are purely computational--

truncation and roundoff errors. It has been performed and was

found to generate an error of only about 1 percent after one

period of calculation. This is an illustration of the accuracy

of our dynamical model.

The next set of benchmark calculations is the one in which

we have a perfect initial condition, but not a boundary condi-

tion. The boundary condition is thus kept frozen from the ini-

tial time. This represents complete ignorance of the boundary

condition. The result is to be compared against the result in

which we have partial information on the boundary condition.

This comparison will give us a measure of the merits of this

additional boundary condition and hence give some clue as to

the most efficient boundary condition sampling scheme.

The persistent dynamical calculation has been performed for

60 time steps starting from period 2.25, 3, 3.75, and 4.5 re-

spectively. The NRMS (Normalized Root Mean Square) streamfunction

error, which is defined as

= (2.139)
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where _ is the true field

is the forecast field,

is shown in Figure 2.5. Figure 2.5a is for the experiment that

starts from period 2.25. Figure 2.5b-d from period 3, 3.75,

4.5 respectively. The error, starting from zero, increases to

100 percent in about a month. The streamfunction error field

is seen to have a steady state gross feature after some tran-

sience. This steady state gross feature of the streamfunction

error field is shown in Figure 2.6a-d for starting time at

period 2.25, 3, 3.75, 4.5 respectively. These error maps are

to be used to construct error models in Chapter IV.

II.6 Dependence on Persistence Interval and Reinitialization
Interval

In a persistent dynamical forecast, the forecast error in-

creases very rapidly with time. The N_MS streamfunction error

reaches 100 per cent in about a month. To get a better fore-

cast, we can update either the boundary condition and/or the

interior field. In this section, several dynamical simulation

experiments are performed with different persistent intervals

and reinitialization intervals. The former refer to how fre-

quently the boundary condition is updated, while the latter

refer to how frequently the interior field is updated. A Pn

experiment denotes one in which the boundary condition is up-

dated every n time steps but kept persistent between them. A

Rn experiment denotes one in which the interior field is up-

dated every n time steps. We are interested in knowing how the
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0.8

0.4
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22.80
0.0

23.51 24.22 24.93 25.65 27.36 28.07 28.78 29.49 30.21

(c) (d)

Figure 2.5 NRMS streamfunction errors as functions of time for

the persistent dynamical forecasts that start at period

( a ) 2.25 ( b ) 3.00

( c ) 3.75 ( d ) 4.50
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(a)

i I i I \

I !

_S

Cb)

I I
I I

/ I
I

,,-,--.-.-.-...

(c)

Figure 2.6

(d)

The steady state gross feature of the streamfunction

error fields for the persistent dynamical forecasts

that start at period

( a ) 2.25 ( b ) 3.00
( c ) 3.75 ( d ) 4.50
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forecast error depends on the persistent interval and the re-

initialization interval. To determine the dependencies and

sensitivities of the forecast error on various parameters con-

stitutes one of our major modeling efforts.

Some results related to boundary updating have been re-

ported in Robinson (26). It was found there that the global

RMS streamfunction error is controlled essentially by the time

interval between successive updates of individual points on the

boundary. It does not depend strongly on whether the boundary

points are updated all at once or piecewise in some particular

order, although piecewise updating does smooth the error curve.

Also, the forecast error, although sensitive to the overall

accuracy of the supplied boundary streamfunction data, is rela-

tively insensitive to large errors in boundary values of vor-

ticity. Thus, in the experiments reported here, when we update

the boundary condition, we update only the streamfunction and

at one time. In the interior updating, we update the stream-

function by true values. The vorticity is updated by the der-

ived vorticity from the streamfunction with a 2nd order

Laplacian scheme.

All the experiments performed in this regard are summarized

in Table 2.1. They all start from perfect initial conditions

but use different boundary and interior updating strategies.

_enever a field is updated in the interior, it is updated at

two consecutive time steps in order for it to be fully re-

initialized (see Figure 2.1).
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Experiment Boundary Updating Interior Updating
No.

2.1 PI0 --"

2.2 PI0 R5

2.3 PI0 RI0

2.4 PI0 R30

2.5 PI5 ---

2.6 PI5 R5

2.7 P15 RI0

2.8 PI5 R30

Table 2.1 -- Summary of boundary updating and

interior updating experiments.

The N_4S streamfunction errors for these experiments are

shown in Figure 2.7 and Figure 2.8. Figure 2.7a-d is for

Experiment No. 2.1-4, while Figure 2.8a-d is for Experiment

No. 2.5-8. It can be seen that the error is essentially domi-

nated by the boundary condition updating. The interior updat-

ing does not do much good if the boundary condition fails to

be updated, and is not effective until some time has passed

(around 30 days)_ This tells us that, in a forecasting experi-

ment, the most efficient way of collecting data to obtain a

better forecast is to collect the data on the boundary.

* Note the envelopes of the error curves, especially near

the end of the calculations.
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Figure 2.7 NRMS streamfunction errors for the experiments that

update the boundary every i0 time steps, but update

the interior every

( a ) ( b ) 5 time steps

( c ) i0 time steps ( d ) 30 time steps



-58-

.

0.3,

.

O°

18.24

0._,

0.3

0.2

0.i

0.0

18.24

i

19.23 19.73

(a)

20.23

0.0

1 24 18.73 19.23

(b)

19.73 20 Z3

i

18.73 19.23

(c)

Figure 2.8

19.73 20.23

0.5.

18.24 18'.73 19'.23 19.73

(d)

NRMS streamfunction errors for the experiments that

update the boundary every 15 time steps, but update

the interior every

( a ) ( b ) 5 time steps

( c ) i0 time steps ( d ) 30 time steps

23
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CHAPTER III

THE STATISTICAL APPROACH

III.l General Objective Analysis

In this section, we derive the general objective analysis

formula. This formula is well known and has been used by

meteorologists for a long time (Gandin (i0) ). A recursive

algorithm for the general objective analysis is introduced

next. This was first discovered by Petersen (20). However,

it is not implemented here because not all data are used to

interpolate to a grid point in our statistical model. It is

included here only for theoretical interest.

Let _ be a homogeneous random field with zero mean and

known covariance function

/_t'x) = 0 (3.1)

where overbar denotes ensemble average.

Let

(3.2)

_c×_) = _,,rx_,>+ e(_q.) (3.3)

( _.=I, .... N)

be a set of measurements of _ at the generalized coordinates

X = X i (i = i, .... N) respectively, Assume the measurement
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errors _ (X=) ( _= I_"'N) are uncorrelated with one another

and with the field _ but have known variance E

We are interested in interpolating _ :f_)l _ I,--" _}

all points in space in order to reconstruct the whole field,

-----0 (3.4)

: II_ (_,_=/, .iv) (3.5)

to

that minimizes the mean square error _'(x)--[_x)-_6x)J = has

the weighting coefficients

j-I
( _:-L. /v) (3.7)

where D is a matrix with the (_: _)-_ element

.zb = c:,<_-x_),,.E&._ (;,:=I..-./,') (3.8)

and the minimal mean square error is

I'cx_=c:o>-X C(x-X_)A_c(x-;p) (39)

This is the famous Gauss-Markov theorem. This powerful tech-

nique has been widely used to reconstruct a random field from

a set of coarsely distributed data. It is known by many names:

objective analysis (Gandin(10)), linear interpolation, extra-

polation, and prediction (Petersen(19)), and random field re-

construction (Petersen(18)).

The best linear estimate at a generalized coordinate X
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We note in (3.7) that if E _ 0, then _ (X_)_ _&_,

CX;) # O , (_ _= Ip --- A/) , i.e., the linear

least mean square estimate at a data point is not the data at

this data point; and the minimal mean square interpolation error

at a data point is not identically zero. This is expected since

if the data are not perfect, then the estimate at a given data

point will be improved by the data at other points. If E = 0,

(3.7) and (3.9) become

( z--L' ,,v)-' (x-xt (3.7a)

[ (*)= C(o) -- __.

-I

C ()¢-X&) C[,_ C (x-X_) (3.9a)

where C is a matrix with the ('_)-t_ element

c;_ = c (x;-x_) (i., _ .=C .--,v)

In this case, we have the following interesting results

(3.8a)

(_ _ = & ..-_v) (3.1o)

/-_) = o c E= &---/v) (3.n)

_X) I ; = _ "'" 24 t areNamely, the optimal weighting functions

cardinal and the minimal interpolation error vanishes at data

points.

In computing the optimal weighting coefficients and minimal

interpolation errors, we have to invert an NXN matrix if there

are N data available. That is fine if these data are all that

we can get; since we need to invert the NXN matrix only once.
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But what happens if one more additional datum arrives? Do we

have to recompute the whole thing all over again from the be-

ginning? Set up the (N+l)x (N+I) °matrix, invert it, compute the

optimal weighting coefficients, the minimal interpolation errors

and so on. It would be nice if we could build up on what we have

done already, reducing the total computational effort. Fortunately,

this turns out to be possible. The following paragraphs describe

a recursive algorithm to do the job.

Assume N data I _(X_)l_=Js---_/I have already been pro-

cessed; namely, we have computed the optimal weighting functions

_&A/(x)I_= _---A/_ and the minimal interpolation error _

for them.

#:t

_;',_(X) = C(O)- Z C <X-X;)PJc_ C(X-)_) (3.9b)
C_'f

Write (3.7b) and (3.9b) in different forms

£2(_)= C(o)-_ C(x-x;)o(_c_ (s.13>

additional datum _(XN+t ) arrives, the new optimalIf one more

weighting functions { _/v,,o(:. 6xPl [=J,.--/V+I_ and the minimal inter-

polation error _! (x) satisfy

_t _I

j=l

B,_.,cx)= C(o)- }2,C[x-x_)_x_ (3.1s)
r,t!
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Consider the matrix

In the last row

._! I .2)/_, • •

_=, A_ ' "

mH, _.. - • ._N,¢._,_,o

(3.16)

[ C(XH_I-_,) C(Xw+_'Y_) " " " C()_-X N) CIo)*E]and is related to

0_(Xm+,)l {=f..._ through (3.12). .. The matrix in (3.16)

becomes

,;"I ,;=l ,;=I
(3.16a)

Multiply the i-th row by --o_i'(MN.,)

to the (N+l)-th row, we get

(,:-b --- N) and add them

• • _,_ c(x_,-_',)

• " .A_, C o;,.,%)

• _.... CC.'_,-_'_)
N

• o cco ,r-zcc -   
Z.=!

(3.16b)
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The determinant _N÷I of (3.16) is equal to the

determinant of (3.16b) and is equal to

.,;.=I

be calculated from (3.14)
The weighting function -'A_'_/::'/(X3can

by the Cramer's rule

' ( Ix)=--

9N, ._,,,-

2_, _,._ •

._w,,, cox--X,,)

_)AI C(X-XAw) (3.18 )

By applying the same strategy to the last row in (3.18), we get

,,., ,v )] (3.18a)

From (3.14) and (3.12)

=z,_ .__>+cc_,-_,_

,; (x) = -- ...'X,,w,Cx'_w,>Cx,,,,_)( c=/, ,v)

(3.19)

(3.20)
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J

j
Thus, the recursive procedures for computing

and _! _X_ from {_(X)I_=[,"'/V I and

(i) compute _ _:(XA_I) I _= I> "'" N

(ii) compute _ from (3.17)
_N

(iii) compute _(x) from (3.18a)

(iv) compute _ A_!(_/& fX)J6./...A/t from (3.20)

(V) compute EA2.I(x) from (3.21)

(3.21)

I A,+, ..N_.,I

are in order

The logic diagram of the recursive algorithm* which is ap-

propriate for sequential estimation is shown in Figure 3.1. A

few interesting remarks follow:

Let

The difference between the optimal linear estimates from

(N+I) data and N data at a general coordinate x is

* This recursive algorithm is taken from Petersen (20). I sup-

plied the details of derivation here. In practice, we work only

in the low ranges of the parameter N (see Section III.3), so it

is not very useful for our purpose. Also, this algorithm is not

a very good algorithm as pointed out to me by Prof. Anderson.
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N = N+I

N-- I

I
i

=l(x) =

C(x l,x)

c(xI,xI)

I

E_(x) = C(0)-

Compute
N N

{_i(XN+l )} i=l

C2(Xl,X)

C(x I,xI)

Compute

_+i

AN

N
N

= C(0)+E-Z C(XN+I-Xi) _i(XN+l)
i=l

Compute

ANN+I
(x) = [C (x-x,,+l)_

_N+I AN+I

N
N

7 C(x-x.) _i(XN+l) ]
i=l I

i
Compute

N+I, , N N+I, , N
_. ix) = ei(x)- UN+ItX) ui(XN+l )1

I
Compute

AN+I N+I, , 2

_+l(X) = E2(x) - _N ( C,N+Itx))

Figure 3.1 A recursive algorithm for the general objective

analysis.
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= _W"v-I Cx) [

(3.22)

So it is equal to the difference between the actual and the

estimated value of the (n+l)th observation, multiplied by the

weighting coefficient at X from the (n+l)th observation.

From (3.21)

) mH÷,-
_N (3.21)

And the minimal interpolation error always decreases as new data

.,,,C.e:.,are added. +I ¢O can be regarded as a measure of the "figure
_N

of merit" of the new data point at a generalized coordinate X.

III.2 The Statistical Model

If we let the generalized coordinate X in (3.6) and (3.7)

be (r,t), where r is the spatial coordinate, t is the time,

then they become the space-time objective analysis formulas.

These formulas can be used to interpolate or extrapolate in

space a patch of data to points within the patch or outside

the patch at a given time, or else can be used to predict the
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field at a future time. The space-time interpolation scheme

which uses the data at the same time level and forecasts the

field forward in time forms our statistical forecast model.

The quality of our interpolation and forecast results de-

pends strongly on how well the modelling assumptions are sat-

isfied by the available data. If these assumptions are not

satisfied, some results we have obtained before will not be

valid. For example, (3.21) states that the minimal mean

square interpolation error will decrease as the number of data

available increases. This result is not always true in real

situations. The data added may cause the result to deteriorate instead

of improving it. This occurs sometimes in our simulation ex-

periments.

One of the potentially violable assumptions we have made

is that the correlation function is homogeneous, stationary ,

and does not depend on the strength of the field. These are very

restrictive assumptions. Very few sets of real data satisfy these

assumptions exactly. Of course we could have made more general

assumptions which allow nonhomogeneity and nonstationarity.

However, if the random field is not homogeneous and stationary,

then the correlation function has to be known at every point

and at every time. This is a great deal of information to com-

pute or estimate if an a priori analytic correlation function

is not available. The assumptions we made here were

reached after taking the computational and accuracy requirements

into consideration.
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w

The correlation function which we employ in the statistical

model is computed from the simulated ocean data set provided

by the exterior calculation of the dynamical model. Since the

correlation is assumed to be homogeneous and stationary, it is

computed via the formula

where t o = period two, tf = period six - _ t, since only the

data from period two to period six are stored from the exterior

calculation. (3.22) is the average of all products of two data

samples which are separated by (_A_) in space and have a

time lag _ t. This correlation function has been computed for

all

in increment of a grid interval (15.625 km)

(3.23)

0 _ _@ _ _time steps (3.24)

in increment of a time step (1.008 day), and are stored for

later use. Some of the correlation function maps computed are

shown in Figure 3.2. Figure 3.1a-f are the correlation function

maps for_t = 0, 8, 16, 24, 32, 40 time steps respectively. The

size of the domain shown is 250 km square.

Although we have computed the correlation function for 4_0,

the correlation function for _ t < 0 can be inferred from this

due to the assumptions of homogeneity and stationarity



-70-

(a) (b)

(c) (d)

Figure 3.2
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(e) (f)

Figure 3.2 ( Cont. )

The calculated correlation function

maps for At =

(a) 0 (b) 8

( c ) 16 ( d ) 24

( e ) 32 ( f ) 48

time steps.

The maps are shown for -125 km <_Ax,Ay <=125 km.
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(3.25)

It can be seen that the correlation function reveals a

westward propagating property which is typical of mid-latitude

mid-ocean eddies.

We now discuss the statistical forecast scheme in detail.

In interpolating from a collection of data to a given point by

the space-time objective analysis, we found that it is very in-

efficient if all data are goingto be used. Too much time has

to be spent to invert a large matrix and to compute the weighting

coefficients in (3.7). Thus, we limit the number of data points

chosen to N (a parameter). Only those points which have the

first N highest correlations with the given point are chosen.

This can increase the efficiency very drastically if N is much

smaller than the original number of data. Another difficulty

arises when the data points chosen are too highly correlated

with each other. In this case, the covariance matrix be-

comes ill-conditioned and we incur a serious numerical diffi-
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culty. To avoid this problem, the data points are chosen in a

way such that no two data chosen have a correlation higher than

Cmax (a parameter). This is only an empirical precautionary

procedure and is not theoretically justified. Finally, since

the correlation functions are only computed for-125 km_Ax, _ y

125 km, only those data points with distances among them

satisfying -125 km-__ x,_ _ _- _ 125 km, will be chosen, where

_X_ is the distance in the X-direction between data point i

and data point j.

Taking all the above considerations into account, our data

points selecting algorithm goes like this.

(i) Sort all the data points according to their correlation

with the point to be interpolated. (A shell sorting al-

gorithm is used in the statistical model - See Knuth(15)).

(ii) Choose the data point which has the highest correlation.

(iii) Search along the sorted list for a data point such that

it is within 125 km square and 48 time steps of all the pre-

vious ones chosen and it does not have correlation more than

Cmax with all the previous ones chosen.

(iv) If the number of the chosen data points is equal to N,

or allthe available data have been run out, then stop,

otherwise go to (iii).

This algorithm is represented in Figure 3.3.

After the data points have been chosen according to (i)-(iv).

The standard objective analysis routine is invoked to do the

interpolation using these chosen data points. This completes
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Sort the observation
M

points {xi} i=l into
M

{x'. } such that
1 i--1

C(Xl,X) < C(x',x)= j
M > i >_ j >__i_ _

1
I x{isselected,i(i)°i1

i N_-_ I

I j=2

I i=l,l(1)=l

no

no

i j=j+l 1

within
3

125 Km square
and 48 time

steps of

?

i--i+l yes

C(x_ '. 'xI(i)) <_-Cma '

?

yes

T .
x'.3is selectedI (N+I) =j

Figure 3.3 The data points selection algorithm in the statistical
model.
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the detailed description of our statistical model.

III.3 Parameters Study and Statistical Forecast Examples

In our description of the statistical model in Section III.l,

we introduced two parameters whose values were to be chosen

judiciously to produce accurate, efficient, and stable results.

These parameters are N (the number of data points to be chosen),

and Cma x (the maximum correlation any two chosen data points can

havel. Ideally we could Use analytic methods to find the optimal

parameters once and for all. However, as we pointed out earlier,

the assumptions we have made in our statistical model may not

correctly represent the real situation so well. Any result de-

rived theoretically from these assumptions may be misleading.

Thus, we resort to empirical studies in choosing the right para-

meters here. We run several simulation experiments which use

various combinations of parameters and see which combination

produces the best results. We then try to give some explanation

of the results if possible.

We use the statistical forecasts which employ data at the

same time level for our parameters study here. Some other para-

meters are also introduced. Let S and Fil be the parameters that

represent the sampling of the initial field and the filter used.

S = n means that the initial field is sampled at every n grid

points. Fil = (m,n) means that an m-th order Shapiro filter*is

applied n times after the field has been predicted. Of course

not all of these parameters are independent. For example, the

actual number of points chosen depends on how the parameters

* Shapiro (21), (22).
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Cmax and S are chosen. If Cmax is chosen too small and/or S is

chosen too large, then N can't exceed a certain number. All the

experiments performed in this regard are summarized in Table 3.1.

N_4S streamfunction errors
Expt. Filter after (in percentage)

No. S N Cma x order times 5 (time steps) i0 15

3.1 1 1 --- 4 1 18.6 39.4 64.4

3.2 1 5 0.99 - - 24.0 42.2 66.4

3.3 1 5 0.98 4 1 23.5 41.7 63.6

3.4 1 5 0.98 2 1 23.5 41.7 63.5

3.5 1 5 0.98 2 l0 23.6 41.7 63.3

3.6 1 5 0.97 2 1 24.0 43.2 60.4

3.7 1 5 0.97 2 10 24.2 43.2 60.0

3.8 1 5 0.95 2 1 25.0 43.4 65.5

3.9 1 5 0.95 2 i0 25.2 43.5 65.6

3.10 1 7 0.91 2 i0 24.1 43.0 59.0

3.11 1 i0 0.99 - - 24.3 45,5 60.9
3.12 1 i0

3.13 1 10 0.98 2 i0 25.7 67.0 131.0

3.14 1 10 0.96 2 1 245.3 332.4 145.2

3.15 1 i0 0.96 2 i0 215.0 299.7 142.3

3.16 1 15 0.98 2 1 150.9 56.9 69.9

3.17 1 15 0.98 2 I0 124.0 52.5 62.7

24.0 42.4

0.98 2 1 27.7 85.3 169.0

3.18 2 1 --- 4 1 61.9

3.19 2 2 0.91 4 1 24.3 41.8 61.4

3.20 2 3 0.91 4 1 23.6 41.8 61.9

3.21 2 4 0.91 4 1 23.9 41.9 61.0

3.22 2 5 0.98 4 1 24.2 42.5 60.3

3.23 2 i0 0.9 4 1 35.8 50.3 70.5

3.24 3 1 --- 4 1 28.3 43.8 64.7

3.25 3 5 0.98 4 1 24.2 42.0 59.6

3.26 4 5 0.98 4 1 25.1 42.3 60.5

3.27 4 5 0.98 4 2 25.1 42.3 60.4

3.28 4 5 0.98 2 1 25.0 42.2 60.2

3.29 4 5 0.98 2 2 24.9 42.1 60.0

3.30 4 5 0.98 2 10 24.7 42.0 59.4

Table 3.1 Summary of the experiments performed in

the parameters study

From Table 3.1, we observe the following:

(a) If we have a very dense initial field of data, say S = i,

then we don't need too many data points to forecast the field in
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the future. As a matter of fact, a single data point of the

initial field, one which is best correlated with the point to

be interpolated can be enough. And more data points added will

not necessarily improve the result, as (3.21) indicates. This

is strong evidence that the model assumptions are not satisfied

too well. As a matter of fact, the more data we have, the more

difficult the computation will be, as Experiments 3.14-3.17 show.

This can be explained roughly as follows. The covariance matrix

(3.8) has the form (after dividing each row by _0)+E )

o< I

If S = 1 and Cma x is not set too small, then _ _, _...

(3.26)

are

the matrix

/

The determinant of the matrix is

(3.26a)

H-I

(I-_) [/+[J4-1)_] . This

determinant is shown in Figure 3.4 as a function of N parameter-

ized by _ . We can see as N and/or _ increases, the deter-

minant decreases and has a tendency to destabilize the numerical

computation. Decreasing N and/or _ (N Cma x) has a stabilizing

numbers which are very close to i. For simplicity, we consider
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AN

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1 2 3 4 5 6 7 8 9 I0 ii 12 13 14 15

N

Figure 3.4 The determinant AN - (i- _)N-I[I+(N-I)=]-- -

as a function of N for a -

(a) 0.95 (b) 0.90 (c) 0.85 (d) 0.50
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effect.

(b) For higher S, increasing N can improve the result. This

is expected, since, if we have a coarse sampling, taking the

average of the values of more data points will be better than

just using the value of the most correlated data point. For

S = 2, N can be chosen to be 3. For S = 3, N = 5. In general,

N = f(s). This function has to be determined empirically for

every S. But this won't bother us, because only small values

of S are most frequently used.

(c) Increasing the order and the number of times of applying

the Shapiro filter can improve the result. This is because the

forecast field is not very smooth, and any way of smoothing the

field can decrease the error.

One of the statistical forecast examples is shown on Fig-

ure 3.5. Using the true data at period 4.5, we statistically fore-

cast the field forward in time. Figure 3.5a-h shows the result

after 2, 4, 6, 8, i0, 12, 14, 16 time steps respectively. The

figures on the left hand side are the true fields, while the

figures on the right hand side are the statistically forecast

fields. The NRMS error curve of the statistical forecast is

shown in Figure 3.6. The statistical forecast is found to re-

produce the true field very well except near the eastern boun-

dary. This is because the information expected to come in is

missing, so the field near the eastern boundary is simply ob-

tained from the old boundary data with decay in space and time.

This can be explained by a one dimensional example. Consider



-80-

Min=-6.1
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Figure 3.5 Min=-5.8 Max=5.3 CI=I.0
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Min=-5.8 Max=5.5 CI=l. 0

I s I I j
J j" i t/

sJ I L /

s _ . I1

,,',
_#,_ , i 11

Min=-4 • 7 Max=4.3

! b

! !

Ci=i . U

(h)

Min=-5.8 Max=5.7 CI=I. 0 Min=-4.4 Ma Ci=l. 0

Figure 3.5 (Cont.)
Statistical forecast results using the true

field at period 4.5 as the observation data after

(a) 2 (b) 4 (c) 6

(d) 8 (e) i0 (f) 12

( g ) 14 ( h ) 16 time steps.

The figures on the left hand side are the true fields,

while the figures on the right hand side are the

statistically forecast fields.
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1.0

0.8"

0.6"

0.4"

0.2-

0.0

27.36 27.55 27.74 27.93 28.12

Figure 3.6 The NRMS streamfunction error for the statistical

forecast that uses the true data at period 4.5.
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a true field

_'_(x,'_) = Co_(._÷ct_-_o) -L -_X-</.-

in an open domain (-L, L). The correlation function is

(3.27)

C(_x, _%)= _ CoS(_ c4_) (3.28)

If we use only the best correlated point in the space-time in-

terpolation formula to forecast the field _s_+_)at time 0 for-

ward in t£me, the statistical forecast field will be

{ C.((x+ct*Oo) -L_-x-"L-c?cGs (x+ o_ - L) Co$(/-+0,)L-ct-_X-< i
(3.29)

for 0-< _-<_-_ . The field between L-ct and L is obtained from

the boundary data at time 0 Co$_/+ 80) multiplied by a decay-

ing factor CoS (X+ C6 -L) in space and time.

The difference between the statistical forecast and the true

field in this region is

= &.s (x+ce-L) &S(L+8o)-¢.sCx+cf,_Oo)

= CoSCx+Ct-L) (o_(L+_,)-Co$(x,ct-L)c.J(L+_b)

+ AA ( x + c_-L) _. (Z_+8o)

This is illustrated in Figure 3.7.

(3.30)
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Figure 3.7

(d)

1.0

-i.0

1.25_. 5_

I

I

( e )

A one dimensional example illustrating the space-time

objective analysis using the best correlated point.

( a ) The true field at time 0: cos(x+i/4_).

( b ) The true field at time ct=i/4_: cos(x+i/2_).

( c ) The correlation map for cAt=i/4_:i/2cos(_x+i/4_).

( d ) The statistical forecast field using the space-

time objective analysis.

( e ) The statistical forecast error field.
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f

III.4 Statistical Forecasts using Data at several Time Levels

In this section, we give some statistical forecast simula-

tion results in which data at several time levels are used.

This reflects the situation of a ship steaming in the mid-oceans

and collecting the data along its path. We are interested in

finding an optimal path of collecting data in order to construct

the initial condition for the dynamical model. This is close to

the classical problem of finding the most efficient distribution

of meteorological stations to collect the Atmospheric data

(Gandin If0], Chapter 7), but not quite. The data collecting is

constrained by the ship's movement. The speed of the ship is

finite, so the data collected are in a sequential order and are

not simultaneous.

We can formulate this problem as an optimal control problem.

The problem is to find the optimal cruising path and data sam-

pling scheme. The objective is to minimize the error of the

constructed field, as well as the total length of the cruising

path, and the total number of measurements (such as the number

of XBT's cast, etc.), when subjected to the constraints that

the data are collected on a feasible cruising path (here feas-

ible means that the speed limit of a ship is not violated). To

solve this optimal control problem analytically is very difficult.

Although the optimal solution can be solved analytically by

making further assumptions about the problems,

it may not be practically useful since these assumptions may
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not be satisfied realistically. We have this experience in

Section III.2.

Here we devise a cruising path based on our intuition. We

want to see how the space-time objective analysis performs in

this case. Of course this cruising path is far from optimal.

However, this is the first step in attempting to solve the

problem. Eventually we may have to resort to a simulation method

to find the optimal cruising path, just as we have done in

Section III.2 to find the optimal parameters.

The one we consider here is to start the cruising and data

collecting from the eastern boundary. (This is based on the in-

tuition that the waves propagate westwards. The information that

comes in from the eastern boundary stays the longest in the

domain.) We steam the ship along the eastern boundary collecting

data at every 4 grid points (62.5 km). This is accomplished in
500

one day. The speed of the ship must therefore exceed 24 - 21 km/hr,

which is achievable by today's standard. The seeond day we steer

the ship along the path which is 4 grid points west of the

eastern boundary, collecting the data every 4 grid points. The

process continues on. On day 10,we return the ship to the beginning of

the eastern boundary without collecting any data and repeat the cruising

and data collecting processes. The cruising and data collecting path is

shown in Figure 3.8. The statistical forecast results are shown

in Figure 3.9. Figure 3.9a-s represents the true field and fore-

cast field on day 1-19 respectively. The true fields are shown
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Figure 3.8 The cruising and data collecting path for the

statistical forecast experiment that uses data

at several time levels. The data are collected

at every 4 grid points ( 62.5 km ) along the

cruising path.
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Figure 3.9 Statistical forecast results using data at several
time levels at day
(a) i (b) 2 (c) 3
(d) 4 (e) 5 ( f ) 6
(g) 7 (h) 8 (i) 9
( j ) i0 ( k ) ii ( i ) 12
( m ) 13 ( n ) i$ ( o ) 15
( p ) 16 ( q ) 17 ( r ) 18
(s) 19.
The figures shownon the left hand side are true fields,
while the figures shownon the right hand side are the
statistical forecast fields.
The NRMSstreamfunction error is shownin ( t ).
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on the left hand side, while the forecast fields are shown on

the right hand side. The data used for interpolation on day 1

through day 9 are all the data that have been collected. The

result on day 10 is a pure statistical forecast from the pre-

vious data because we don't collect any data on this day. The

data used for interpolation on days Ii through 19 are the most

recent data at all data points, i.e., replace day 1 data by

day ii data, day 2 data by day 12 data, and so forth.

The statistical forecasts are seen to be very good. They

produce the qualitative structures of the waves quite well.

The parameters used for the statistical forecasts are N = 3,

C = 0.90, Fil = (2,100). The N_MS streamfunction error is
max

shown on Figure 3.9(t). It can bee seen that after one lap of

cruising, the error is maintained at about 30%, which is about

the level of error expected for statistical forecasts with

parameters S = 4, At = 4 (this is the average of the time steps

that the data are forecasted forward in time).
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CHAPTERIV

THE COMBINEDSTATISTICAL AND DYNAMICALAPPROACH

IV.I Optimal combination of two estimates

In this section we introduce another statistical method

which is used to obtain a better estimate from several a priori

estimates of the same quantity. Let _I _ be two a priori es-

timates of a random variable _ with the following character-

istics:

(4 .i)

(4.2)

(4.3)

(4.4)

(4.5)

where the overbar denotes ensemble average.

_4 be a convex linear combination ofLet

_z , i.e.

We are interested in determining the optimal

mires the mean square error ___ (__ _)z .

_/L_/ and

0_ _ --__ (4.6)

_4 that mini-

It is straightforward to show that the optimal estimation

has weighting coefficients

(4.7)

(4.8)
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and mean square estimation error

_ and

(4.9)

Figures 4.1 and 4.2 show -m[_ /--_)" as a func-

tion of the correlation coefficient _ respectively.

Here we assume the a priori estimates are biased and cor-

related. Of course, we could have removed the biases if they

had been already known, but sometimes we don't know the biases

exactly. For example, a dynamical forecast with persistent

boundary conditions gives biased estimates of the field at a

later time with uncertain biases. In this case, the biases have

to be estimated. The present formulations are adopted so that

they can be easily applied.

The formula for optimal combination of estimates are very

useful for our forecasting studies here, because sometimes it

is possible to obtain more than one estimate of the field--e.g.,

via dynamical forecast and statistical forecast. The optimal

combination gives us a better estimate of the field than each

individual one.

The optimal combination of estimates can be easily extended

to more than two a priori estimates. This has special implica-

tions in ocean modellings because of the availability of a wide

variety of data sources. If we form an a priori estimate from

the data of each source, then we can use the optimal combination

formula to obtain a better estimate of the synoptic field and

finally assimilate this information into the model. Some ex-
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amples of applying the optimal combination will be given in

Section IV.3.

IV.2 The Error Model

If we are going to combine two a priori estimated fields

together, from Section IV.I we have to know five statistical

parameters, viz., B I, B 2, El 2, E2 2 and / at each grid point

_)
(in general _@+---_-- parameters in combining n a priori es-

timates). In the case that a field has one thousand grid points,

we have to know five thousand statistical parameters in order

to combine two fields together. This is a formidable quantity

of information to obtain or estimate. Furthermore, if we are

going to drive the forecasting model forward in time, these

statistics have to be known at several time levels. In some

special cases, e.g., in a closed domain with linear system

dynamics, the evolution of these statistics can be computed

analytically from the initial statistics, the system dynamics

and noise parameters. But in an open domain with nonlinear sys-

tem dynamics, to compute the evolution of these statistics

analytically is totally out of the question.

The approach we adopt here is to compute these statistics

directly from the estimated fields. This is possible due to

the availability of the simulation verification data which is

provided by the exterior calculation described in Chapter II.

However, we do not compute these statistics on a grid point by

grid point basis. We group those grid points which are likely



-103-

to have the same statistics together by looking roughly at the

error map. Divide the whole domain into regions which are groups

of grid points. The statistics in each region are then treated

as uniform and are computed from the simulated error data. An

example of constructing this error model is shown in Figure 4.3.

In the beginning, we use these actual computed statistics

to combine two given field estimates together. This is to pro-

vide an optimal estimate for a particular error model chosen. Later,

these statistics are replaced by estimated values which are the

averages of the actual computed statistics from several realiza-

tions. We use these estimated statistics to run the same experi-

ment again. If the result is not too far different from the pre-

vious one, these estimated statistics will be accepted. It _s

these estimated statistics that are intended to be used in the

forecasting studies which employ real ocean data as discussed in Chap. V.

IV.3 Examples of the Combined Statistical and Dynamical Approach

In this Section we explore various ways of employing sta-

tistical methods in the dynamical model. The statistical meth-

ods we use are essentially the space-time objective analysis

introduced in Chapter III and the optimal combination of esti-

mates introduced in Section IV.I.

The first example uses the objective analysis to map the

coarsely distributed data onto the computational grid in order

to provide the initial and boundary conditions for the dynami-

cal model. The second example uses the space-time objective
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Figure 4.3 An example showing the construction of

an error model from the error map.
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analysis to _orecast the boundary condition for the dynamical

model either from an initial condition or from the previous

dynamical forecast field. The third example applies the opti-

mal combination of estimates formulas to assimilate a patch of

recently acquired data into the dynamical model. The Last ex-

ample applies the optimal combination of estimates formulas to

obtain a better estimate of the field from the persistent sta-

tistical forecast and persistent dynamical forecast.

(i) Initial and boundary conditions samplin_ experiments*

In the first example, we perform several simulation experi-

ments using various kinds of data sampling schemes to provide

the initial and boundary conditions for the dynamical model.

The streamfunction data are collected in the domain at an ini-

tial time and near the boundary at all future times. They are

not collected at every grid point. Instead, the objective an-

alysis is used to map these coarsely distributed data onto the

computational grid. Some experiments use true initial and/or

boundary vorticity, while others derive the initial and/or

boundary vorticity from the streamfunction by using the second

order Laplacian scheme, after the streamfunction data have been

wholly interpolated. All the experiments performed in this re-

gard are summarized in Table 4.1.

* Private communication by A.R. Robinson and J. Groisser.



-106-

Experiment No.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Initial Condition

"2 " D

"3" D

"4 " D

V V

V V

V V

V V

V V

"4" D

"4" D

_ Condition

V

V

V

V! X t!

llVl!

"BX"

"BV"

IINl!

"BV"

"BVP 5"

V

V

V

D

D

D

D

D

D

D

Table 4.1 Summary of initial and boundary conditions

sampling experiments.

where

"2" denotes that the data are sampled at every 2 grid

points (31.25 km).

"3" denotes that the data are sampled at every 3 grid

points (46.875 km).

"4" denotes that the data are sampled at every 4 grid

points (62.5 km).

V denotes that the true (veritas) data are used or the

data are sampled at every 1 grid point (15.625 km).
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D denotes that the vorticity is derived from the stream-

function using the second order Laplacian scheme.

"X" denotes that the boundary data are sampled using the

"X" scheme.

"V" denotes that the boundary data are sampled using the

"V" scheme.

"BX" denotes that the boundary data are sampled using the

"BX" scheme.

"BV" denotes that the boundary data are sampled using the

"BV" scheme.

"N" denotes that the boundary data are sampled using the

"N" scheme.

"BVP5" denotes that the boundary data are sampled using

the "BV" scheme and kept persistent for 5 time steps.

The boundary data sampling schemes "X", "V", "BX", "BV", "N"

are show in Figure 4.4. The "X" scheme samples 192 points

out of 384 in the boundary strip; the "V" scheme samples 128

points out of those 384; the "BX" scheme, 96 points out of

384; the "BV" scheme samples 64 points, and the "N" scheme, 76

points, both out of 384 in the boundary strip.

The NRMSstreamfunction errors for experiments 4.1-4.10

are shown in Figure 4.5. They are compared with that of ex-

periment 4.11, which is the P5 experiment. From this figure,

we observe the following:
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(b

1

( d )

Figure 4.4

I •

° •_

-Q,

o(_) -

• 0(_}

(a) (e)

Different boundary data sampling schemes.

( a ) "X" : samples 192/384 in the boundary strip.

( b ) "V" : samples 128/384 in the boundary strip.

( c ) "BX": samples 96/384 in the boundary strip.

( d ) "BV": samples 64/384 in the boundary strip.

( e ) "N" : samples 76/384 in the boundary strip.
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Figure 4.5

( Expt. 4.1 )

( Expt. 4.5 )

( Expt. 4.4 )

i I I !

i0 20 30 40 time steps

NRMS streamfunction errors of the initial and boundary

condition data sampling experiments.
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(a) If the boundary condition sampling scheme is kept the

same, the NRMS error increases as the initial condi-

tion sampling scheme becomes coarser.

(b) Boundary condition sampling schemes "X" and "V" pro-

duce almost the same results. Boundary condition

sampling schemes "BX", "BV", "N" produce almost the

same result. The NRMS error, in general, increases

as the number of data points sampled in the boundary

strip decreases -- at least in the beginning.

(c) Although we have, in experiment 4.9, reduced the ini-

tial condition sampling to only 1/16 of the interior

points, boundary condition sampling to only 1/6 of

the boundary strip, the NRMS error is still below 15%.

(d) The NRMS errors from different error sources are not

independent. The error caused by coarse sampling in

both initial and boundary conditions is not separable

into errors caused by coarse sampling in initial con-

dition and boundary condition individually. Experi-

ments 4.3, 4.7, 4.9 illustrate this remark.

(ii) Dynamical Forecast usin@ Statistical Forecast Boundary
Condition

In a closed domain, the boundary condition is time in-

variant. It is always perfect and, theoretically, there is no

contribution to the forecast error from the boundary condition.

In an open domain, the boundary condition changes with time.

It is not known beforehand. This uncertainty in the boundary
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condition will deteriorate the dynamical forecast. Furthermore,

from Section II.5, we know that the boundary condition is the

principle factor in determining the forecast error. Thus, to

obtain a better dynamical forecast, we first have to obtain a

better estimate of the boundary condition.

In this example, we are given a perfect initial field and

are asked to forecast the field forward in time as accurately

as possible. Here we try the statistical forecast model (space-

time objective analysis) to predict the boundary condition,

and then use the predicted boundary condition to drive the

dynamical forecast model. Two experiments are performed here

in predicting the boundary condition. The first experiment

always uses the perfect initial field as the observation data

to forecast, in the statistical model, boundary conditions at

later times. The second experiment uses the previous dynamical

forecast field as the observation data to forecast, again in

the statistical model, the boundary condition at the next time

step. Of course some other strategies are possible. The NRMS

streamfunction errors of these two experiments are shown in

Figure 4.6. They are compared with the error in the persistent

experiment, in which the boundary condition is kept frozen

from the initial time as introduced in Section II.4. Curves

(a), (b) and (c) are for the persistent dynamical forecast,

dynamical forecast using the statistical forecast boundary

condition from the perfect initial field, dynamical forecast

using the statistical forecast boundary condition from the
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0.5

0.4
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(a)

(b)

4 8 12 16 time steps

Figure 4.6 The NRMS streamfunction errors of the

( a ) persistent dynamical forecast

( b ) dynamical forecast using the statistical

forecast boundary condition from the initial
field.

( c ) dynamical forecast using the statistical

forecast boundary condition from the previous

dynamical field.
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previous dynamical forecast field respectively.

The calculations are performed for 16 time steps (about 2

weeks). In the beginning, the forecasts using the statistical

forecast boundary condition are not better than the persistent

dynamical forecast. This is because the statistical model is

not able to resolve the wave speeds for the grid interval Ax

and time step At chosen. The waves propagate about 1/3 grid in-

terval per time step. When it searches for the most correlated

point at the first time step, in the statistical model, it will

assume the wave is stagnant or has moved one grid interval de-

pending on the exact values of the correlation function for

At = 1 (time step). Thus, the statistical forecast boundary

conditions for small At are not good, hence the dynamical fore-

cast using these boundary conditions. However, for large At,

the statistical forecast boundary conditions become better es-

timates than the persistent boundary conditions. Therefore, the

dynamical forecast using these boundary conditions improves.

This can be seen from curve (b) which has significant improve-

ment over curve (a) for large At (33% vs. 58% at the end of 16

time steps). Curve (c) is worse than curve (a) because the

boundary condition is always forecasted one time step forward

from the previous dynamical field and the statistical fore-

cast for one time step can not produce good results as ex-

plained earlier. The improvement of curve (b) over (a) is

gained by using a better estimate of the boundary condition,

which can be used as a measure of the value of the better
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boundary information. This example tells us that, given only

an initial field, the persistent dynamical forecast is not

the best we can do. Obtaining a better estimate of the boundary

condition by some scheme will improve the dynamical forecast.

The statistical forecast of the boundary condition is one,

but there are still better; in Section IV.4, we will see some

other schemes.

(iii) Patch Updating in the Interior

In Section II.5, when we updated the interior, we updated

the whole field. A whole field of data is a large quantity

of information. Collecting it would take up valuable re-

sources. Moreover, only partial data, sparsely scattered

through the region, are available--especially in the oceanic

case. Yet these data, no matter how few, will give us new

information about the system. With them we can find a better

estimate of the dynamic field. There are different ways of

assimilating these new data into the dynamical model. They can

be either inserted directly into the dynamical forecast field

or else interpolated into the whole region and then combined

with the dynamical forecast field, etc. For discussions of

various data assimilation techniques, see Bengtsson (2, 3, 4)

and Ghil (ii).

The data assimilation method, which is used here, inter-

polates the sparse data into the whole region by the objective

analysis formula introduced in Section III.l, and then com-
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bines the interpolated field with the dynamical forecast field

by a formula (introduced in Section IV.l) for the optimal com-

bination of estimates. This approach is slightly different from

the one commonly practiced in Meteorology, which interpolates

the difference between the observation and the forecast to find

a correction term to the forecast field (Rutherford (27)). It

uses the same interpolation technique, but the statistics re-

quired are different. The differences between these two approaches

are explained in detail below.

Let _

9t

assume

P

be the true field

be the dynamical forecast field

be a set of observations at location x i, i=l, ..N

_I be the interpolated field

be the optimal estimate field

= ) C _=1, "'° #)

(i.e., the measurements are error free)

Our approach is first to obtain _) from

_=I

N -!

analysis

where

(4.10)

_o by objective

(4.11)

(4.12)

(4.13)
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then we combine _) and _) to obtain _c_)

(4.14)

where (4.15)

(4.16)

_ 9"- _;-9 , (4.17)

(4.18)

(4.19)

(4.20)

(c;_-_._)c_- _) -_ s/
(4.21)

Thus the statistics required in our approach are

(4.22)

(4.23)

(4.23)

(4.25)

(4.26)

(4.27)

(4.28)
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and the data are assimilated in two steps.

The approach commonly practiced in Meteorology as described

in Rutherford (27) is to interpolate the difference between

the observation and the forecast to find a correction term to

the forecast field

where

(4.30)

(4.31)

The statistics required in this approach are

(4.32)

(4.33)

(4.34)

and the data are assimilated in one step.

We can see not only that the number of steps in assimilating

data is less, but also that the statistics required are fewer

in the latter approach. Another possible advantage of using the

latter approach, in which the improved estimate has the form

of a Kalman filter, is that in a closed system with linear

dynamics the forecast error _7__ forms an innovation pro-

cess under moderate assumptions. So the optimal estimate field
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w

at a certain time incorporates all the past data information.

To assimilate additional data at a later time, we need only con-

sider the new data. This allows a sequential estimation pro-

cedure. For our problem this remarkable Markov property is de-

stroyed because the system is open and the dynamics is non-

linear. However, for simplicity, we assume this Markov property

still applies. So only the data at the present time are used

to form the best current estimate. The differences between

these two approaches are summarized in Table 4.2.

No. of steps of

operation

Statistics

required

For linear and

closed systems

Our Approach

Don't have Markov

property

Rutherford's Approach

Have Markov

property

Table 4.2 Differences between our approach

and Rutherford's approach to data

assimilation

Although Rutherford's approach may seem to have many advantages

overour approach, we adopt ours for the following reasons: first, we

have been using its first step to interpolate the observation data so



-119-

frequently. Second, we have explicitly computed only the statis-

tics of the true field _x) _) , but not of the forecast

error field (_)-_x_(_)-_)) . (The forecast error statis-

tics are only computed for the persistent dynamical forecast in

our study.) Third, the system we are dealing with is nonlinear

and open so the third advantage in Rutherford's does not survive.

Here we present two cases of patch updating in the interior to

see how the interior updating can improve the forecast. The first

case performs a dynamical forecast by using a perfect initial con-

dition but a persistent boundary condition; thus, the forecast

error comes mainly from the boundary condition errors. The second

case performs the dynamical forecast by using a zero initial con-

dition but a perfect boundary condition; here the forecast error

comes mainly from the initial condition error. The data patch we

used is shown in Figure 4.7. The data (streamfunction only) are

collected every 3 grid points (46.875 km) in a central square

region whose size is 281.25 km square. The error model we used

is shown in Figure 4.8. The 500 km square domain is divided into

two regions--a patch and a rim, and the statistics in each re-

gion are treated as uniform. Figure 4.9 shows the NRMSstream-

function error as a function of time in the first case: the in-
terior is updated every 5 time steps. We can see that the
interior updating improves the estimate at the time of the data
assimilation. But the forecast immediately becomes worse again

after just one time step. The envelope of the error curve is

essentially that of the persistence experiment. In Section II.5,

where a whole field was updated, the results are similar. The

suggestion is, then, that the boundary conditions have a dominant
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_----281.25 KM_

grid

intervals

_ 500 KM _i

Figure 4.7 The data patch used in the interior

updating.



-121-

Region II

Region I

_------281.25 KM----_

|_

r" 500 KM

Figure 4.8 The error model used in the interior

updating experiments.
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Figure 4.9 The NRMS streamfunction error in the interlor

updating dynamical forecast experiment in which

a perfect initial condition but a persistent

boundary condition is used.
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influence on the dynamical forecast; the interior updating

will do no good if the boundary condition itself fails to be

updated. Here we confirm the same result. Figure 4.10 shows

the N_4S streamfunction errors of the experiments in the

second case with different updating frequencies. Curve (a) is

for the experiment without updating. Curve (b), for the ex-

periment which updates the interior every 30 time steps.

Curve (c), 15 time steps, curve (d), 5 time steps. It can be

seen that the updating is the most effective when it is applied

for the first time. Later applications do not improve the re-

sult as much as the first one. Curves (b), (c), and (d) come

very close together near the end of the experiments. Figure

4.11 shows the N_MS streamfunction errors of the experiments

in the second case, however, all experiments update the inter-

ior only once. Curve (a) is for updating at time 0, curve (b)

is for updating after 15 time steps and curves (c) - (e), for

updating after 30, 45 and 90 time steps respectively. They all

show improvements immediately from the updating, while the

errors stay fairly flat afterwards. Figure 4.12 shows some

typical dynamical forecast, interpolated, estimated error fields

processed in the interior updating. Figure 4.12a shows the dynami-

cal forecast error fields. Figure 4.12b shows the interpolated obser-

vation error field. Fig. 4.12c shows the optimal estimate error fields.

In all the experiments in the second case, when we update

the interior streamfunction, we also update the vorticity

by taking the Laplacian of the updated streamfunction using a
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Figure 4.10 The NRMS streamfunction errors in the interior

updating dynamical forecast experiments in which

a zero initial condition but a perfect boundary

condition is used. The interior is updated every

(a) --- (b) 30 (c) 15 (d) 5 time steps.
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18.24 20.3"/ 22.51 24.65 26.79

Figure 4. ii The NRMS streamfunction errors in the interior

updating dynamical forecast experiments in which

a zero initial condition but a perfect boundary

condition is used. The interior is updated only

once at

(a) 0 (b) 15 (c) 30 (d) 45 (e) 90 time steps.
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Figure 4.12 (Cont.)

Some of the error fields occur in the interior

updating experiments.

( a ) dynamical forecast error fields.

( b ) interpolated observation error fields.

( c ) optimal estimate error fields.

The figures on the left and right hand sides are

the error fields of two different realizations.
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2nd order scheme. If we fail to update the vorticity, then the

result will not improve. As a matter of fact, it becomes worse

as shown in Figure 4.13. This shows the importance of updating

the vorticity in the interior in order to make the fields dyn-

amically balanced. This point is obscured in the first case,

because the result is dominated by the persistent boundary con-

dition.

(iv) Optimal Combination of Persistent Statistical and Persistent

Dynamical Forecasts

Given an initial field, we can predict the future evolution

of the dynamic field by either dynamical forecast or statistical

forecast. The simplest and most natural dynamical forecast is

one that uses the initial boundary condition to drive the dyn-

amical forecast model, although more complex schemes are

available as discussed in example (ii). Of course, we need to

have some statistics about the system. The simplest and most

natural statistical forecast is one that uses the initial field

as the observation data to drive the statistical forecast

model. Since the data used in both cases are from one realization

only, they are named the persistent dynamical forecast and

the persistent statistical forecast respectively.

Both persistent forecasts are estimates of the same dynamic

field. They can be combined to form a better estimate of the

system by the formula for the optimal combination of estimates

introduced in Section IV.I. The error model we are going to

use is shown in Figure 4.14. The rationale for choosing this
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Figure 4.13 The NRMS stream function error in the interior

updating dynamical forecast experiment in which

a zero initial condition but a perfect boundary

condition is used.

( a ) No interior updating.

( b ) The interior stream function is updated by

a data patch every 5 time steps, but the

interior vorticity is not updated.

( c ) The interior stream function is updated by

@ data patch every 5 time steps. The interior

vorticity is derived from the stream function

by a second order Laplacian scheme after each

updating.
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Region III

Region I Region I

Figure 4.14 The error model used in the optimal combination

of persistent statistical and persistent

dynamical forecasts.
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error model is that the persistent dynamical forecast has dis-

tinct error statistical properties in the central region and

near the boundary as shown in Figure 2.6, while the persistent

statistical forecast has distinct error statistical properties

near the eastern boundary and the rest of the region as shown

in Figure 3.4. This error model takes these two types of error

characteristics into consideration.

In the beginning, we use the actual error statistical

parameters, which are computed via the verification data. The

N_4S streamfunction errors of the persistent statistical fore-

cast, the persistent dynamical forecast, and the optimal com-

bination of these two are shown in Figure 4.15. Curve (a), (b),

(c) is for the persistent statistical forecast, the dynamical,

and the optimal combination respectively, the error for the

persistent statistical forecast is slightly higher than for the

persistent dynamical forecast, and it is not smooth. Non-

smoothness results in the statistical calculation because we

have chosen the grid interval A h and the time step _ t in

such a way as to satisfy the Courant-Friedrichs-Lewy condition

V_-__# _ for the dynamical calculation to be stable

where U is the maximum of the fluid speeds and phase speeds

present and _ is a constant of 0(_ (Courant (8)). In our

simulation, the simulated wave propagates westwards about 1/3

grid interval for every one time step. Thus, when it searches

for the highest correlated grid point in the statistical fore-

cast, it will sometimes have a non-smooth transition in the
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Figure 4.15 The NRMS streamfunction error of the

( a ) persistent statistical forecast

( b ) persistent dynamical forecast

( c ) optimal combination of the persistent

statistical and dynamical forecasts

using actual error statistics.

The calculation starts at period 3.
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highest correlated grid point selected from one time step to

the next time step. And this accounts for the non-smoothness

of the persistent statistical forecast error curve. It can be

seen that we have contradictory objectives to be achieved

here. In the dynamical calculation we want U _-__ to be less

than one for the dynamical calculation to stable, while in the

statistical forecast we want U_ to be greater than one so

that the wave speeds can be resolved. The one we choose here is

a compromise reached after taking both into consideration.

Next, we use the average error statistical parameters which

are the averages of the error statistical parameters of several

realizations. The error statistical parameters Bd (dynamical

2 (dynamical
forecast bias), B s (statistical forecast bias), E d

forecast means square error), Es 2 (statistical forecast mean

square error), _ (correlation coefficient) of 4 realizations

and their average are shown in Figure 4.16 for each region in

the error model and each time step. Figure 4.16a shows the

error statistical parameters for the calculation that starts

at period 2.25. Figure 4.16b-d, for the calculation that starts

at period 3, 3.75, 4.5 respectively. Figure 4.16e is the aver-

age of Figure 4.16a-d. The N_{S streamfunction errors of the

persistent statistical forecast, persistent dynamical forecast,

and the optimal combination using the averaged error statisti-

cal parameters are shown again in Figure 4.17. Curves (a), (b) and

(c) are for the persistent statistical forecast, persistent

dynamical forecast, and the optimal combination respectively.
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Figure 4.16 The error statistical parameters Bd, Bs, Ed'2
9

E_, y in each region at each time step for the

optimal combination of persistent statistical

and persistent dynamical forecast experiments

that starts at period

( a ) 2.25 ( b ) 3.00

( c ) 3.75 ( d ) 4.50

The averages of the four realizations are shown

in(e).
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Figure 4.17 The NRMS streamfunction error of the

( a ) persistent statistical forecast

( b ) persistent dynamical forecast

( c ) optimal combination of the persistent

statistical and dynamical forecasts

using averaged error statistics.

The calculation starts at period 3.
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It can be seen that the N_MS error of the optimal combination

using averaged error statistics is larger than that using ac-

tual error statistics. But it still shows improvement over

errors in the persistent statistical and dynamical forecasts.

Figure 4.18a-d shows the true field, persistent dynamical fore-

cast field, persistent statistical forecast field, and op-

timal estimated field respectively after 8 time steps. Figure

4.19a-d shows the same things except after 16 time steps.

IV.4 Optimal Exploitation of One Data Realization

In this section, we are interested in answering the ques-

tion: what is the best we can forecast the future, given a per-

fect initial field? In a closed system, the answer to this

question is easy because the initial condition is the only

driving force. The best forecast is simply the run of the dy-

namical model using this initial condition. In an open system,

however, the initial condition is not the only driving force.

Another driving force, the boundary condition, is unknown. In

Example (ii) of Section IV.3, we knew the persistent dynamical

forecast was by no means the best. We got a better result when we

used a better estimate of the boundary condition. In that ex-

ample, we used the boundary condition which was statistically

forecasted from the initial condition and the result improved.

But this is still not the best forecast. In the following para-

graph, we devise some better schemes to estimate the boundary

condition.
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Figure 4.18

l 1

CI=I.0 Min=-3.9 Max=5.8 CI=I.0
(d)

Some of the fields that are generated in the optimal

combination of the persistent statistical and dynamical

forecasts experiment.

( a ) The true ( b ) The dynamical forecast

( c ) The statistical forecast

( d ) The optimal estimated field after 8 time steps.

The calculation starts at period 3.
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Some of the fields that are generated in the optimal

combination of the persistent statistical and dynamical

forecasts experiment.

( a ) The true ( b ) The dynamical forecast

( c ) The statistical forecast

( d ) The optimal estimated field after 16 time steps.

The calculation starts at period 3.
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As we have seen in example (ii) of Section IV.3, the statis-

tical forecast boundary condition from the dynamical field at

the previous time step is not good because of the way the grid

interval and the time step are chosen. The eddy fields propagate

westward about 1/3 grid interval per time step. This speed can-

not be resolved by our statistical model. In the following ex-

periment, we try a way to advect the dynamical field 1/3 grid

interval to obtain the boundary condition at the next time step.

This is implemented by a simple linear interpolation formula

_,_) = _ _,_) +_a _(_A_ _) . The NRMS streamfunction

error of the dynamical forecast using this advected boundary

condition is shown in Figure 4.20(d), which is compared to those

of the persistent dynamical forecast (a), dynamical forecast

using the statistical forecast boundary condition from the per-

fect initial field (b), dynamical forecast using the statistical

forecast boundary condition from the previous dynamical field

(c). Although it is still worse than the persistent dynamical

forecast (a), it is better than the dynamical forecast using

the statistical forecast boundary condition from the previous

dynamical field (c). If we use a better interpolation scheme

and/or treat the wave speed more correctly, we should obtain

a result better than that of the persistent dynamical forecast.

We have seen several estimates of the boundary conditions--

persistence, statistical forecast from the perfect initial

field, statistical forecast from the previous dynamical field,

advection--which are available at the next time step. If we
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Figure 4.20 The NP_IS stream function errors of the dynamical

forecasts using the

( a ) persistent boundary condition.

( b ) statistical forecast boundary condition from

the perfect initial field.

( c ) statistical forecast boundary condition from

the previous dynamical field.

( d ) advected boundary condition from the previous

dynamical field by i/3 grid point.

( e ) optimal combination of the persisted and the

statistically forecasted boundary conditions

from the previous dynamical field.

( f ) optimal combination of the statistically

forecasted boundary conditions from the perfect

initial field and the previous dynamical field.

( g ) optimal combination of the advected boundary

condition from the previous dynamical field and

the statistically forecasted boundary condition

from the perfect initial field.
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combine them optimally by the formulas introduced in Section IV.I,

we can obtain a better estimate of the boundary condition. Figure

4.20 (e), (f), and (g) show the NRMS streamfunction errors for

the dynamical forecasts using the optimal combination of the

persisted and the statistically forecasted boundary conditions

from the previous dynamical field, the optimal combination of

the statistically forecasted boundary conditions from the per-

fect initial field and the previous dynamical field, the op-

timal combination of the advected boundary condition from the

previous dynamical field and the statistically forecasted

boundary condition from the perfect initial field respectively.

The logic diagrams for (e), (f) and (g) are shown in Figure 4.21.

The error model used for the optimal combination is shown in

Figure 4.22. They are all better than any of the forecast schemes

described above and are very close together. This may represent

the upper limit we can do for the particular error model chosen

for the optimal combination. To improve the results, we have to

refine our error model to get even better estimates of the

boundary condition. Of course, we have to pay additional cost--

i.e., the number of the statistical parameters required will

be increased.

In the extreme case, where each grid point on the boundary

forms a separate region, we can get the best estimate of the

boundary condition, hence the best forecast. But the number of

statistical parameters required will be intolerable.

Table 4.3 summarizes all the experiments that are performed

in regard to the optimal exploitation of one data realization.
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The logic diagrams for experiments

( a ) 4.4.5

( b ) 4.4.6

( c ) 4.4.7
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Figure 4.22 The error model used for the optimal combination

of boundary conditions in experiments 4.4.5-7.

The whole boundary is divided into two regions--

one is the eastern boundary, the other is the

rest of the boundary.
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Expt.
No.

Boundary condi-
tion used

*Parameters used in the
Statistical Forecast

Curve No.

in Fig.

4.20

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

persistence from the

initial boundary

condition

statistical forecast

from the perfect

initial field

statistical forecast

from the previous

dynamical field

advection from the

previous dynamical

field by 1/3 grid

point

optimal combination

of the persisted and

the statistically fore-

casted boundary condi-

tions from the previous

dynamical field

optimal combination of

the statistically fore-

casted boundary condi-

tions from the perfect
initial field and the

previous dynamical
field

optimal combination of

the advected boundary

condition from the pre-

vious dynamical field

and the statistically

forecast boundary con-

dition from the perfect

initial field

C = 0.95
max

N = 4

Cma x = 0.95

N = 2

C = 0.95
max

N= 2

C = 0.95
max

N = 4

(from the perfect

initial field)

N= 2

(from the previous

dynamical field)

(a)

(b)

(c)

(d)

(e)

(f)

C = 0.95 (g)
max

N = 4

Table 4.3 Summary of the optimal exploitation of

one data realization experiments.

* The parameters Cma x and N are the maximum correlation any two

chosen data points can have and the number of data points

chosen for statistical forecast, respectively as defined in

Section III.3.
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Of course, we could have applied the optimal combination

to the interior to improve the forecast. However, we learned

from previous results that the interior updating can only im-

prove the estimate at the time of updating. It does not help

in any forecasting which is essentially dominated by the boun-

dary condition. Also, it is very costly, so we decided in the

end not to do it here.
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CHAPTERV

CONCLUSIONSAND FUTURERESEARCHSUGGESTIONS

In this thesis, we have tried various approaches to fore-

cast the evolution of the mesoscale currents in a block of

ocean. The dynamical approach bases the forecast on solving

the initial and boundary value problem posed by the linearly

damped barotropic potential vorticity equation. A finite ele-

ment method using rectangular bilinear elements is used to

solve the above equation numerically. Because it is capable of

delivering remarkably accurate forecast results if provided

with perfect initial and boundary data, it is adopted as the

"Harvard Open Ocean Dynamical Model2' Boundary conditions for

the dynamical model are specially treated because of the open

boundary on which the boundary conditions vary in time with

the flow. Some sufficient conditions are proposed for a set of

open boundary conditions to be well-posed, but what the neces-

sary and sufficient conditions are for the well-posedness is

unknown. I suggest the research along this line be continued

in the future. Close collaborations with mathematicians are

expected.

We obtain an estimate of the error of the solution in terms

of the errors of the initial condition and the boundary condi-

tions accumulated in time as a by-product in studying the open

boundary condition problem. But the estimate is usually too

conservative. The bound in the estimate is precise only when

the dynamics are linear and the boundary conditions are per-
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fect (i.e., error free).

Some benchmark calculations were performed to provide com-

parison data for the later forecast experiments. The most in-

teresting benchmark calculations are the calculation that uses

perfect initial and boundary data and the calculation that

uses perfect initial data and persistent boundary data.

To improve over persistent dynamical forecast, we can up-

date the boundary condition and/or the interior field. (There

is a difference between updating the interior and reinitializa-

tion. Reinitialization not only updates the interior, but also

updates the boundary condition.) It was found that the NRMS

streamfunction error was essentially dominated by the boundary

condition updating. The interior updating did not do much good

if the boundary condition failed to be updated. The effect due

to interior updating can only be seen after some time has passed

(about a month). This suggested that the most efficient way of

collecting data to do a good forecast was to collect the stream-

function data on the boundary which was further substantiated

by later experiments. (The forecast is relatively insensitive

to the boundary vorticity data -- Robinson and Haidvogel, (26).

The statistical approach bases the forecast on the space-

time objective analysis formula. The correlation function used

wascomputed from the simulated ocean data set generated by the

exterior dynamical calculation. In the future, this should be

computed from the real ocean data set. A data point selecting

algorithm was devised to pick the obervation data for the in-
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terpolation to be stable and efficient. Many statistical fore-

cast experiments which use data at one time level were performed.

These results were used to find the best parameters to be used

in the statistical model. A statistical forecast experiment

which uses data at different time levels is also shown. Here

we devise a simple cruising path and data sampling scheme for

a ship steaming in the mid-ocean. It is found that the error

is maintained at about 30 percent after one lap of the curising.

What the optimal cruising path and data sampling scheme is for

the field to be maintained at a certain level of accuracy is

suggested for future studies.

The combined statistical and dynamical approach bases the

forecast on the combination of the above two approaches. The

statistical model is used to provide the initial and boundary

conditions and to assimilate recently available data into the

dynamical model. It would be interesting to know what the most

efficient way of collecting the initial and boundary data is

in order that the forecast satisfies a given accuracy require-

ment. Example IV.3.1 gives some clues to the answer. But there

is still a lot of work to be done before the results can be

really useful.

Some interior patch updating experiments were also per-

formed in which a patch of new data is assimilated into the

dynamical model. The reinitialization experiments above were

special cases of this in which the whole field is updated. It

is found that the patch updating can be used to improve the



-155-

dynamical forecast due to the initial condition error but not

the boundary condition error.

Next we turned our attentionto what the best forecast is,

given a perfect initial field. Since the boundary condition

has a significant influence on the forecast result, it is im-

portant to obtain a good estimate of the boundarY condition.

First we tried using the boundary conditions statistically

forecasted from the perfect initial field and the previous dy-

namical field. Both showed worse than the persistent dynamical

forecast in the first few time steps. This is because the grid

interval _x and the time step at At chosen are not able to re-

solve the eddy wave speeds. The dynamical forecast using the

statistical forecast boundary condition from the perfect ini-

tial field improves afterwards, but from the previous dynamical

field is always worse than the persistent dynamical forecast.

To remedy this problem, next we tried advecting the dynamical

field 1/3 grid point to obtain the boundary condition at the

next time step. The result improved, but it is still worse than

the persistence. We suggest that a better interpolation scheme

and/or a more accurate wave speed value be used in the future

to do advection. The result should be able to be made better

than the persistence. Finally, we tried three different ways

of estimating the boundary conditions from two a priori esti-

mates. The first is to combine the persisted and the statis-

tically forecasted boundary conditons from the previous dynami-

cal field. The second is to combine the statistically fore-
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casted boundary conditions from the perfect initial field and

the previous dynamical field. The third is to combine the ad-

vected boundary condition from the previous dynamical field

and the statistically forecasted boundary condition from the

perfect initial field. They all show significant improvement

over the persistent dynamical forecast (25 percent vs. 60 per-

cent error after two weeks). The price we pay for the improve-

ment is the additional statistical parameters required for the

combination. Whether there is any better scheme to estimate

the boundary condition for the particular error model chosen

is suggested for future investigations.

However, the success of any model depends on its ability

to work with the real data. Our models, though they work satis-

factorily with the simulation data, have to take up this chal-

lenge too. The statistics needed for the optimal combination

are presently computed from the simulation data in which a

verification data is available. The averages of these statis-

tics from many realizations will be the starting point for

working with the real data. The final statistics to be used

are the ones that work best with the largest practical real

data set. They may have to be computed from the real ocean

data if necessary.

The Harvard Open Ocean Modelling Group, who works jointly

with the MODE and POLYMODE Group, has the priviledges of ac-

cessing the real ocean data. These real ocean data will be used

to verify the results obtained and evaluate the models con-



-157-

structed. The models have to go through many iterations before

they can physically realistically simulate the real ocean. The

models can then be used to study some of the critical dynamical

questions in the oceans--"What are the sources of the eddies

that populate the North Atlantic gyre, how are they coupled

to mean flow of the general circulation, and what is their con-

tribution to the physics that controls the general circulation?"

(Robinson (24) ) They are useful in assessing the dynamical

hypotheses, interpreting the field data, and planning future

open ocean dynamics experiments: where and when to collect data

in an open ocean in the most efficient way so that the forecast

error is within certain tollerance limits. This is a complicated

and challenging problem. There is still a lot of work waiting

to be done.

4
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